© Borgis - Postępy Nauk Medycznych 7/2012, s. 595-598
Adrianna Łoniewska-Lwowska, *Jadwiga Fabijańska-Mitek, Katarzyna Koza
Dlaczego warto badać proteom krwinek czerwonych przechowywanych w bankach krwi
Why study proteome of red blood cells stored in blood banks**
Department of Immunohaematology, Medical Centre of Postgraduate Education, Warsaw
Head of Department: Jadwiga Fabijańska-Mitek,PhD
Streszczenie
Zadaniem banku krwi jest takie przygotowanie krwinek czerwonych, by przenosiły wydajnie tlen do tkanek oraz zachowały długo żywotność i funkcje w krążeniu biorców. Odkrycie antykoagulantów oraz nowoczesnych roztworów konserwujących umożliwiło przechowywanie krwinek czerwonych do 42 dni. Transfuzjologia jest dziedziną medycyny o restrykcyjnym systemie kontroli jakości, którego usprawnianie wymaga między innymi zrozumienia zmian zachodzących w krwinkach czerwonych w trakcie ich przechowywania. Konieczność takich analiz wspierają klinicyści, najczęściej z oddziałów kardiologicznych, którzy wskazują na istnienie ryzyka związanego z przetaczaniem jednostek krwi długo przechowywanych oraz zawierających leukocyty. Do tej pory nie poznano procesów molekularnych leżących u podstawy starzenia się krwinek czerwonych i ich wpływu na efektywność transfuzji. Analiza proteomiczna wykorzystująca nowoczesne techniki spektrometrii masowej może w przyszłości służyć jako narzędzie oceny zmian zachodzących w trakcie przechowywania krwi. Może być pomocna w ulepszaniu procedur preparatyki i przechowywania krwinek czerwonych, zwiększając jakość i bezpieczeństwo transfuzji.
Summary
The primary goal of any blood bank is to prepare red blood cells (RBCs) being able to efficiently deliver oxygen to the tissue and survive in the recipient circulation long enough to perform its functions. Discovery of blood anticoagulant and modern preservation solutions enabled to store the RBCs for 42 days. Transfusion medicine is characterized by very restrictive control system, which in order to be constantly improving, needs better understanding of RBC senescence processes undergoing during storage. The necessity of this analysis is supported by many clinicians, mostly from the cardiology departments, who point out different recoveries depending on the storage period and presence of leukocytes in the blood the patient received. However, till now the molecular bases of RBC senescence and its influence on transfusion efficiency are still not well defined. Proteomic analysis with accompany of modern mass spectrometry techniques reveals not only unexpected complexity of RBC proteome but also serves as a future tool to assess the changes that RBCs undergo during storage. This can be of immense help for further improvement of red blood cells preparation and storage methods, thereby increasing the quality and safety of transfusions.
Introduction
The discovery in the 1915 of sodium citrate as blood anticoagulant (1) has started the possibility to store the blood in blood banks. Further introduction of modern preservation solutions as for example CPDA (citrate-phosphate-dextrose-adenine) or CPD+SAGM (saline-adenine-glucose-mannitol) used in Europe, prolonged the time of red blood cells (RBCs) storage to 42 days. The primary goal of every blood bank is to prepare RBCs being able to efficiently deliver oxygen to the tissue and survive in the recipient circulation long enough to perform its functions. The collection, processing, testing, production and storage procedures in blood banks are closely regulated by special directives and guidelines (2, 3). Until now many biochemical processes of RBCs have been well described. More and more is known about the functions of individual molecules of erythrocyte membrane. But still little understood is the total protein composition of erythrocytes, nor the changes that RBC undergo during 120 days of their life, in conditions of many hematological disorders and during storage under blood bank conditions.
RBC storage lesions
During storage RBCs undergo a number of biochemical, morphological and metabolic changes known as “storage lesions”. For example, it is well described, that due to the accumulation of lactic acid in the blood bag, the pH decreases, and this increases phosphatase 3 enzyme activity, which results in 2,3-diphosphoglycerol (2,3-DPG) degradation. Low level of 2,3-DPG results in increased oxygen affinity to hemoglobin, and thereby causes diminished delivery of oxygen to tissues (4). During RBCs storage period there appear also changes in ATP level what can reflect on reology of erythrocyte (5), loss of S-nitrosothiol-haemoglobin (SNO-Hb) – and thereby decreased NO production and further vasodilatation, as well as membranous band 3 protein and some other proteins rearrangements (6). RBCs display unique reological possibilities provided, among other, by the sophisticated interactions of membrane and cytoskeletal proteins. This enables passage of RBCs through the blood vessels, which are often narrower than erythrocytes. Reduced flexibility will result in impaired perfusion and oxygen delivery to peripheral tissues; moreover, rigid RBCs might directly block capillaries. There are evidences from the in vitro analysis that RBCs storage induces a broad range of impairments of RBC hemodynamic behavior such as deformability, aggregability, and adherence to endothelial cells (7). It was also reported that serious hemorheological disorders, including the decrease in RBC deformability secondary to shape abnormalities, acidosis, and the decrease of blood clotting, start already at the second week of storage and progress up to the end of the storage period (8). There are also evidences of leukocyte influence on increase of RBCs adherence to the endothelial cell layer (9). In the membrane are localized inhibitors of complement pathway, protecting from haemolysis (10) and also proteins taking part in clotting process, transporters, receptors, adhesion molecules and molecules carrying RBC antigens (11).
Red blood cells are the most commonly transfused blood component. Some of the “storage lesions” mentioned above lead to removal of erythrocytes from the circulation but still a huge percentage of RBCs is recovered after transfusion and it is assessed that around 70-75% of them are present in the circulation after 24 hours post transfusion (12).
Adverse results of transfusions of stored RBCs
For twenty years now, there is alive debate concerning the functionality of fresh, several days stored, versus old – 14, 21, 28 or 35 ≥ days long stored blood, as well as leucoreduced versus non-leucoreduced RBCs. Opinion that the functionality of transfused blood from different storage periods can not be regarded as a comparable is supported by many clinicians, mainly from cardiology units who pay attention on different recoveries depending on the storage period and presence of leukocytes in the blood the patient received. These concerns mostly patients with acute coronary syndrome, ischemic heart disease or after coronary interventions, who are particularly susceptible to effects of hypoxia, activation of thrombosis, effects of heamolysis. Many authors demonstrated an increased in-hospital and out-of-hospital mortality among hospitalized patients associated with increased mean age of RBCs transfused (13, 14). Study of patients who were undergoing coronary-artery bypass grafting, cardiac-valve surgery, revealed that transfusion of RBCs stored for more than 2 weeks was associated with a significantly increased risk of postoperative complications. In-hospital death, prolonged intubation, renal failure, septicemia or sepsis, multiorgan failure, and a composite of serious complications were all more frequent in patients given blood stored for more than 14 days. Furthermore, survival, particularly in the first 6 months after surgery, was significantly reduced (15).
However, one should also take into account the possibility that there is no problem with the storage of RBCs, but rather an incorrect analysis of the cases examined (16).
Powyżej zamieściliśmy fragment artykułu, do którego możesz uzyskać pełny dostęp.
Mam kod dostępu
- Aby uzyskać płatny dostęp do pełnej treści powyższego artykułu albo wszystkich artykułów (w zależności od wybranej opcji), należy wprowadzić kod.
- Wprowadzając kod, akceptują Państwo treść Regulaminu oraz potwierdzają zapoznanie się z nim.
- Aby kupić kod proszę skorzystać z jednej z poniższych opcji.
Opcja #1
29 zł
Wybieram
- dostęp do tego artykułu
- dostęp na 7 dni
uzyskany kod musi być wprowadzony na stronie artykułu, do którego został wykupiony
Opcja #2
69 zł
Wybieram
- dostęp do tego i pozostałych ponad 7000 artykułów
- dostęp na 30 dni
- najpopularniejsza opcja
Opcja #3
129 zł
Wybieram
- dostęp do tego i pozostałych ponad 7000 artykułów
- dostęp na 90 dni
- oszczędzasz 78 zł
Piśmiennictwo
1. Zubair AC: Clinical impact of blood storage lesions. American Journal of Hematology 2010; 8: 117-122.
2. Seitz R, Heiden M, Nubling CM et al.: The harmonization of the regulation of blood products: a European perspective. Vox Sang 2008; 94: 267-276.
3. Łętowska M et al.: Medyczne zasady pobierania krwi, oddzielania jej składników i wydawania, obowiązujące w jednostkach organizacyjnych publicznej służby zdrowia. Warszawa, Instytut Hematologii i Transfuzjologii 2011; 1-480.
4. Högman CF: Preparation and preservation of red cells. Vox Sang 1998; 74 (2 Suppl): 177-187.
5. Greenwalt TJ, Bryan DJ, Dumaswala UJ: Erythrocyte membrane vesiculation and changes in membrane composition during storage in citrate-phosphate-dextrose-adenine-1. Vox Sang 1984; 47: 261-270.
6. Jia L, Bonaventura C, Bonaventura J, Stamler JS: S-nitrosohaemoglobin: a dynamic activity of blood involved in vascular control. Nature 1996; 380: 221-226.
7. Relevy H, Koshkaryev A, Manny N et al.: Blood banking-induced alteration of red blood cell flow properties. Transfusion 2008; 48: 136-146.
8. Berezina TL, Zaets SB, Morgan C et al.: Influence of storage on red blood cell rheological properties. J Surg Res 2002; 102: 6-12.
9. Anniss AM, Sparrow RL: Storage duration and white blood cell content of red blood cell (RBC) products increases adhesion of stored RBCs to endothelium under flow conditions. Transfusion 2006; 46: 1561-1567.
10. Miwa T, Song WC: Membrane complement regulatory proteins: insight from animal studies and relevance to human diseases. Int Immunopharmacol 2001; 1: 445-459.
11. Mori D, Yano K, Tsubota K et al.: Computational study on effect of red blood cells on primary thrombus formation. Thromb Res 2008; 123: 114-121.
12. Lion N, Crettaz D, Rubin O, Tissot JD: Stored red blood cells: a changing universe waiting for its map(s). J Proteomics 2010; 73: 374-385.
13. Basran S, Frumento RJ, Cohen A et al.: The association between duration of storage of transfused red blood cells and morbidity and mortality after reoperative cardiac surgery. Anesth Analg 2006; 103: 15-20.
14. Eikelboom JW, Cook RJ, Liu Y, Heddle NM: Duration of red cell storage before transfusion and in-hospital mortality. Am Heart J 2010; 159: 737-743.
15. Gorman Koch C, Li L, Sessler DI et al.: Duration of Red-Cell Storage and Complications after Cardiac Surgery. N Engl J Med 2008; 358: 1229-1239.
16. van de Watering L: Red cell storage and prognosis. Vox Sang 2011; 100: 36-45.
17. Wilkins MR, Sanchez JC, Gooley AA et al.: Progress with proteome projects: why all proteins expressed by a genome should be identified and how to do it. Biotechnol Genet Eng Rev 1996; 13: 19-50.
18. Low TY, Seow TK, Chung MCM: Separation of human erythrocyte membrane associated proteins with one-dimensional and two-dimensional gel electrophoresis followed by identification with matrixassisted laser desorption/ionization-time of flight mass spectrometry. Proteomics 2002; 2 (9): 1229-1239.
19. Kakhniashvili DG, Bulla Jr. LA, Goodman SR: The human erythrocyte proteome: Analysis by ion trap mass spectrometry. Molecular and Cellular Proteomics 2004; 3: 501-509.
20. Roux-Dalvai F, Gonzalez de Peredo A, Simó C et al.: Extensive analysis of the cytoplasmic proteome of human erythrocytes using the peptide ligand library technology and advanced mass spectrometry. Mol Cell Proteomics 2008; 7: 2254-2269.
21. Pasini EM, Kirkegaard M, Mortensen P et al.: In-depth analysis of the membrane and cytosolic proteome of red blood cells. Blood 2006; 108 (3): 791-801.
22. Righetti PG, Boschetti E, Lomas L, Citterio A: Protein Equalizer Technology: the quest for a “democratic proteome”. Proteomics 2006 Jul; 6 (14): 3980-3992.
23. Bosman GJ, Lasonder E, Luten M et al.: The proteome of red cell membranes and vesicles during storage in blood bank conditions. Transfusion 2008; 48: 827-835.
24. Annis AM, Glenister KM, Killian JJ et al.: Proteomic analysis of supernatants of stored red blood cell products. Transfusion 2005; 45: 1426-1433.
25. D’Amici GM, Rinalducci S, Zolla L: Proteomic analysis of RBC membrane protein degradation during blood storage. J Proteome Res 2007; 6: 3242-3255.
26. Rinalducci S, D’Amici GM, Blasi B et al.: Peroxiredoxin-2 as a candidate biomarker to test oxidative stress levels of stored red blood cells under blood bank conditions. Transfusion 2011; 51: 1439-1449.
27. Rubin O, Crettaz D, Canellini G et al.: Microparticles in stored red blood cells: an approach using flow cytometry and proteomic tools. Vox Sang 2008; 95: 288-297.
28. Willekens FL: Roerdinkholder-Stoelwinder B, Groenen-Döpp YA et al.: Hemoglobin loss from erythrocytes in vivo results from spleen-facilitated vesiculation. Blood 2003; 101: 747-751.
29. Willekens FL, Werre JM, Kruijt JK et al.: Liver Kupffer cells rapidly remove red blood cell-derived vesicles from the circulation by scavenger receptors. Blood 2005; 105: 2141-2145.
30. Mohandas N, Groner W: Cell membrane and volume changes during red cell development and aging. Ann N Y Acad Sci 1989; 554: 217-224.
31. Blanc L, De Gassart A, Géminard C et al.: Exosome release by reticulocytes-an integral part of the red blood cell differentiation system. Blood Cells Mol Dis 2005; 35: 21-26.
32. Tyan YC, Jong SB, Liao JD et al.: Proteomic profiling of erythrocyte proteins by proteolytic digestion chip and identification using two-dimensional electrospray ionization tandem mass spectrometry. J Proteome Res 2005; 4 (3):748-757.
33. Bachi A, Simó C, Restuccia U et al.: Performance of combinatorial peptide libraries in capturing the low-abundance proteome of red blood cells. 2. Behavior of resins containing individual amino acids. Anal Chem 2008; 80: 3557-3565.
34. Simó C, Bachi A, Cattaneo A et al.: Performance of combinatorial peptide libraries in capturing the low-abundance proteome of red blood cells. 1. Behavior of mono- to hexapeptides. Anal Chem 2008; 80: 3547-3556.