© Borgis - Postępy Nauk Medycznych 3/2013, s. 229-232
Bernadetta Kałuża1, *Edward Franek1, 2
Inhibitory SGLT2 – nowe doustne leki przeciwcukrzycowe
SGLT2 inhibitors – new oral hypoglycemic drugs
1Department of Internal Diseases, Endocrinology and Diabetology, Central Clinical Hospital of the Ministry of Interior, Warszawa
Head of Department: prof. Edward Franek, MD, PhD
2Department of Human Epigenetics, Medical Research Center, Polish Academy of Sciences, Warszawa
Head of Department: prof. Monika Puzianowska-Kuźnicka, MD, PhD
Streszczenie
Liczba chorych na cukrzycę na całym świecie wzrasta. Równocześnie glikemia u wielu chorych nie spełnia kryteriów wyrównania podawanych przez Amerykańskie lub Polskie Towarzystwa Diabetologiczne. Te dwa fakty przyczyniają się do burzliwego rozwoju nowych możliwości terapeutycznych w cukrzycy. Jedną z takich możliwości opisano w poniższym artykule. Są to leki hamujące transport glukozy i sodu w nerkach. Z jednej strony nasilają one wydalanie glukozy z moczem (naśladując naturalny mechanizm obronny organizmu), powodując zmniejszenie glikemii i ujemny bilans energetyczny, sprzyjający zmniejszeniu masy ciała, z drugiej wzmożone wydalanie sodu z moczem powoduje spadek ciśnienia tętniczego. Ceną za te efekty lecznicze jest jednak zwiększona częstość zakażeń układu moczowego i dróg rodnych. Pierwszym lekiem z tej grupy dopuszczonym na rynek jest dapagliflozyna.
Summary
The prevalence of diabetes increases worldwide and glycemia in many patients Dos not meet the targets precised by American or Polish Diabetes Association. These two fact stimulate development of new treatment possibilities in diabetes. One of them, described below, are kidney sodium and glucose transporter inhibitors. From the one side they increase urinary glucose excretion (mimicking the natural defense mechanism of the organism) resulting in decrease of glycemia and in negative energy balance, favoring decrease of weight, from the other icreased sodium excretion decreases blood pressure. The price for that effects is however increased frequency of genitourinary tract infections. The first marketed drug belonging to this group is dapagliflosine.
The kidney is one of important players regulating the homeostasis of glucose and carbohydrates. One of the involved mechanisms is glucose excretion and reabsorption, mediated by sodium-glucose cotransporters, mainly type 2 (SGLT2), located in the S1 segment of the proximal tubule. This transporter is encoded by SLC5 (specifically SCL5A2) gene (1). It is characterized by high capacity, but low affinity for glucose, and is responsible for about 90% of the reabsorption of glucose from the tubuli (2, 3) (the remaining 10% of glucose is in the physiological conditions reabsorbed by type 1 transporter, SGLT1, located in the S2/S3 segment of proximal tubule (4). The molar ratio of transferred glucose to transferred to sodium is 1:1 for the SGLT2 transporter (1:2 for SGLT1) (2, 5). Sodium-glucose transporter type 2 is sodium-dependent, one-way co-transporter, expressed on the luminal side of the nephron proximal tubule cells (5, 6). It is responsible for active glucose transport from the lumen of renal proximal tubule to renal epithelial cells, against the concentration gradient. Transported to epithelial cells glucose produces gradient between the cell and interstitial fluid, which is then used by GLUT transporters (7, 8).
The mechanism of action of SGLT inhibitors
SGLT2 inhibitors are structurally similar to fenyloglukozide called phlorizin, a non-selective blocker that blocks both type 1 and 2 receptor (9). There is evidence that it acts on SGLT in a double manner: by carbohydrate group and by sugar-free part of the aromatic ring. It seems that glucose-free parts of of SGLT proteins, having a polar structures located on a large transmembranous loop, with the help of which they can interact with glucose-free parts of the inhibitors, play a key role in the mechanism of blocking. On this basis phlorizine binds to nonspecific hydrophobic pocket formed in the last part of the loop (9-11). It should be noted that the SGLT 2 is a protein composed of 672 amino acids which form fourteen transmembranous segments arranged in loops (12, 13).
Pharmacokinetics of SGLT2 inhibitors
All SGLT2 inhibitors are administered orally. Pharmacokinetical parameters such as rate of absorption, time to maximal serum concentration after exposure, time of dissociation from the receptor are different in different drugs of the class. For example, dapagliflozine and ipragliflozine are rapidly absorbed. Peak serum dapagliflozine concentration is achieved after about 1 hour of exposure (12). Ipragliflozin is similarly absorbed and its half-time is about 12 hours (13, 14). The relationship between the dose, plasma concentration and time is linear. Ipragliflozine has several inactive metabolites, called M1, M2, M3, M4 and M6, the main metabolite is M2 (13). Seragliflozine is rapidly absorbed and also rapidly metabolized, maximum concentration is achieved after 30-45 minutes after exposure. The half-life is approximately 0.5 hours to 1 hour (15). Pharmacokinetic of canagliflozine is dose dependent, but much longer than in case of previously mentiod SGLT2 inhibitors. The half-life is approximately 12-15 hours, and time peak concentration after exposure is achieved after similar time (16).
Therapeutic effect of SGLT2 inhibitors
It has been proven that patients with type 2 diabetes have a higher expression of SGLT2 receptors compared to healthy subjects (11, 17, 18). Blocking of these transporters leads to increased urinary excretion of glucose and reduction of both fasting and postprandial plasma glucose concentration. It is estimated that SGLT2 inhibitors may block the reabsorption of glucose at about 60%. Therefore, these compounds may be used in the treatment of diabetes-especially type 2 diabetes mellitus. Indeed, dapagliflozine is the first drug of the calss which is accepted by European Medicine Agency and may be marketed in the European Union.
SGLT2 inhibitors reduce blood glucose not influencing insulin levels, however they may also improve insulin sensitivity and reduce gluconeogenesis in the liver (18). They seem not only to improve glucose control (percentage of glycated hemoglobin, fasting and postprandial plasma glucose) but also body weight as well systolic blood pressure (18). The two latter effects seem to be dependent on the diuretic effect of these medications. This effect, in turn, is probably dependent on the osmotic effect exerted by glucosuria, however it may also result from natriuresis. Sodium excretion occurs in the last parts of nephrons as a rebound after the sodium reabsorption in the proximal parts. There is no evidence up to date that SGLT2 inhibitors may increase natriuresis directly (17, 18).
Powyżej zamieściliśmy fragment artykułu, do którego możesz uzyskać pełny dostęp.
Mam kod dostępu
- Aby uzyskać płatny dostęp do pełnej treści powyższego artykułu albo wszystkich artykułów (w zależności od wybranej opcji), należy wprowadzić kod.
- Wprowadzając kod, akceptują Państwo treść Regulaminu oraz potwierdzają zapoznanie się z nim.
- Aby kupić kod proszę skorzystać z jednej z poniższych opcji.
Opcja #1
29 zł
Wybieram
- dostęp do tego artykułu
- dostęp na 7 dni
uzyskany kod musi być wprowadzony na stronie artykułu, do którego został wykupiony
Opcja #2
69 zł
Wybieram
- dostęp do tego i pozostałych ponad 7000 artykułów
- dostęp na 30 dni
- najpopularniejsza opcja
Opcja #3
129 zł
Wybieram
- dostęp do tego i pozostałych ponad 7000 artykułów
- dostęp na 90 dni
- oszczędzasz 78 zł
Piśmiennictwo
1. Wright EM, Turk E: The sodium/glucose cotransport family SLC5. Pfugers Arch 2004; 447: 510-518.
2. Turner RJ, Moran A: Heterogeneity of sodium-dependent D-glucose transport sites along the proximal tubule: Evidence from vesicle studies. Am J Physiol 1982; 242: 406-414.
3. Turner RJ, Moran A: Further studies of proximal tubular brush border membrane D-glucose transport heterogeneity. J Membr Biol 1982; 70: 37-45.
4. Quamme GA, Freeman HJ: Evidence for a high – affinity sodium-dependent D-glucose transport system in the kidney. Am J Physiol 1987; 253: 151-157.
5. Wright EM: Renal Na(+) -glucose cotransporters. Am J Physiol Renal Physiol 2001; 280: 10-18.
6. Hediger MA, Coady MJ, Ikeda TS et al.: Expression cloning and cDNA sequencing of the Na+/glucose cotransporter. Nature 1987; 330: 379-381.
7. Ganapathy V, Thangaraju M, Gopal E et al.: Sodium-coupled monocarboxylate transporters in normal tissues and in cancer. AAPS J 2008; 10: 193-199.
8. Wright EM, Hirayama BA, Loo DF: Active sugar transport in health and disease. J Intern Med 2007; 261: 32-43.
9. Wells RG, Pajor AM, Kanai Y et al.: Cloning of a human kidney cDNA with similarity to the sodium – glucose cotransporter. Am J Physiol 1992; 263: 459-465.
10. Wright EM, Loo DD, Hirayama BA et al.: Surprising versatility of Na+ – glucose cotransporters: SLC5. Physiology 2004; 19: 370-376.
11. Hummel CS, Lu C, Lin J et al.: Structural selectivity of human SGLT inhibitors. Am J Physiol Cell Physiol 2012; 302: 373-382.
12. Kasichayanula S, Chang H, Haseqawa M et al.: Pharmacokinetics and pharmacodynamics of dapagliflozin, a novel selective inhibitor of sodium-glucose co-transporter type 2, in Japanese subjects without and with type 2 diabetes mellitus. Diabetes Obes Metab 2011; 13: 357-365.
13. Schwartz Sl, Akinlade B, Klasen S et al.: Safety, pharmacokinetic and pharmacodynamic profiles of ipragliflozin (ASP 1941), a novel and selective inhibitor of sodium-depended glucose co-transporter 2, in patients with type 2 diabetes mellitus. Diabetes Technol Ther 2011; 13: 1219-1227.
14. Tahara A, Kurosaki E, Yokono M et al.: Pharmacological profile of ipragliflozin (ASP 1941), a novel selective SGLT2 inhibitor, in vitro and in vivo. Naunyn Schmiedebergs Ach Pharmacol 2012; 385: 423-436.
15. Hussey EK, Clark RV, Amin DM et al.: Single-dose pharmacokinetics and pharmacodynamics of serigliflozin etabonate, a novel inhibitor of glucose reabsorption, in healthy volunteers and patients with type 2 diabetes mellitus. J Clin Pharmacol 2010; 50: 623-635.
16. Devinemi D, Morrow L, Hompesch H et al.: Canagliflozin improves glycaemic control over 28 days in subjects with type 2 diabetes not optimally controlled of insulin. Dabetes Obes Metab 2012; 14: 539-545.
17. Santer R, Calado J: Familial renal glucosuria and SGLT2: from a mendelian trait to therapeutic target. Clin J Am Soc 2010; 5: 133-141.
18. Chao E, Henry R: SGLT2 inhibition – a novel strategy for diabetes treatment. Nat Rev Drug Discov 2010; 9: 551-559.
19. Kamran M, Peterson RG, Dominiguez JH: Overexpression of GLUT2 gene in renal proximal tubules of diabetic Zucker rats. J Am Soc Nephrol 1997, 8(6): 943-948.
20. Nauch MA, Del Prato S, Meier JJ et al.: Dapagliflozin versus glipizide as add-on therapy in patients with type 2 diabetes who have inadequate glycemic control with metformin: a randomized 52-week, double-blind, active-controlled noninferiority trial. Diabetes Care 2011; 34: 2015-2022.
21. Katsiki N, Papanas N, Mikhailidis DP: Dapagliflozin: more than just another oral glucose-lowering agent? Expert Opin Investig Drugs 2010; 19: 1581-1589.
22. Bolinder J, Ljunggren O, Kullberg J et al.: Effects of dapagliflozin on body weight, total fat mass, and regional adipose tissue distribution in patients with type 2 diabetes mellitus with inadequate glycemic control on metformin. J Clin Endocrinol Metab 2012; 97: 1020-1031.
23. List J, Woo V, Morales E et al.: Sodium-glucose cotransport inhibition with dapagliflozin in type 2 diabetes. Diabetes Care 2009; 32: 650-657.
24. Wilding JP, Norwood P, Tjoen C et al.: A study of dapagliflozin in patients with type 2 diabetes receiving high doses of insulin plus insulin sensitizers. Diabetes Care 2009; 32: 1656-1662.
25. www.ema.europa.eu (Access 02 Jan 2013).
26. www.fda.gov (Access 02 Jan 2013).
27. http://bmjopen.bmj.com/content/2/5/e001007 (Access 02 Jan 2013).