Ponad 7000 publikacji medycznych!
Statystyki za 2021 rok:
odsłony: 8 805 378
Artykuły w Czytelni Medycznej o SARS-CoV-2/Covid-19

Poniżej zamieściliśmy fragment artykułu. Informacja nt. dostępu do pełnej treści artykułu
© Borgis - Nowa Stomatologia 2/2017, s. 80-88
Dorota Olczak-Kowalczyk1, Wojciech Grzebieluch2, Miłosz Turkowski3, *Urszula Kaczmarek2
Food and dental caries. Part 2. Nutrition containing polyphenols
Pożywienie a próchnica zębów. Część 2. Żywność zawierająca polifenole
1Department of Paediatric Dentistry, Medical University of Warsaw
Head of Department: Professor Dorota Olczak-Kowalczyk, MD, PhD
2Department of Conservative and Paediatric Dentistry, Wrocław Medical University
Head of Department: Professor Urszula Kaczmarek, MD, PhD
3Specialisation in the Department of Conservative and Paediatric Dentistry, Wrocław Medical University
Head of Department: Professor Urszula Kaczmarek, MD, PhD
Streszczenie
Naturalne składniki pożywienia, a zwłaszcza polifenole, mogą oddziaływać na bytującą w jamie ustnej mikroflorę, powodując hamowanie wzrostu i metabolizmu bakterii próchnicotwórczych i promując przez to wzrost korzystnych gatunków drobnoustrojów. Polifenole stanowią szeroką grupę związków chemicznych występujących powszechnie w diecie. Z różnych naturalnych produktów wyizolowano ponad 8000 związków fenolowych. Zawierają je: owoce, warzywa, płatki zbożowe, kakao, herbata, kawa naturalna i zbożowa oraz kulinarnie stosowane zioła i przyprawy. W badaniach przeprowadzonych na zwierzętach oraz in vitro i in vivo wykazano redukcję rozwoju próchnicy spowodowaną polifenolami zawartymi w produktach spożywczych. Mechanizm działania tych związków w aspekcie zapobiegania rozwojowi próchnicy jest wieloraki. Polega na hamowaniu wzrostu bakterii próchnicotwórczych i obniżaniu produkcji przez nie kwasów, inhibicji aktywności bakteryjnej glukozylotransferazy, zmniejszaniu adherencji bakterii Streptococcus mutans do powierzchni zębów oraz zahamowaniu aktywności ślinowej amylazy. Wiedza odnośnie bioaktywnych składników produktów spożywczych może przyczynić się do wyboru funkcjonalnego pożywienia, które oprócz wartości odżywczej korzystnie oddziałuje na stan uzębienia.
Summary
Natural food ingredients, polyphenols in particular, can influence the oral microflora, inhibiting the growth and metabolism of cariogenic bacteria and promoting the growth of beneficial microbial species. Polyphenols are a broad group of chemical compounds commonly found in the diet. More than 8,000 phenolic compounds have been isolated from various natural products. They are present in fruits, vegetables, cereals, cocoa, natural and grain coffee, as well as culinary herbs and spices. Animal studies as well as in vitro and in vivo studies demonstrated caries reduction due to polyphenols contained in food products. The mechanism of anticariogenic action of these compounds is complex. It involves the inhibition of the growth of cariogenic bacteria, reduction of bacterial acid production, inhibition of bacterial glucosyltransferase activity, reduction of Streptococcus mutans adherence to dental surface as well as inhibition of salivary amylase. Knowledge on the bioactive components of food products can make a contribution to the choice of functional food, which apart from the nutritive properties can also have a beneficial impact on dental condition.



Recent years have witnessed an increased interest in natural food ingredients, which have effects on the oral microflora by both, promoting the growth of beneficial microbes and inhibiting the growth and metabolism of cariogenic bacteria. Among these, particular attention should be paid to polyphenols (1-6).
Polyphenols are phenolic compounds that form a large group of natural substances found in a number of plants, fruits, vegetables, seeds and the leaves of some trees. More than 8,000 phenolic compounds have been isolated from various natural products. Systematisation of these compounds is difficult due to significant variations in their structure and properties. Considering the very general chemical structure of the carbon skeleton of these compounds, flavonoids and phenolic acids derived from benzoic and cinnamic acids may be distinguished. The following subclasses, which are also highly differentiated, may be distinguished in the group of flavonoids: flavones (apigenin, hesperetin, luteolin), flavanones (naringenin, hesperedin, taxifolin), flavonols (quercetin, kaempferol, myristin, rutin), flavanols (catechin, epicatechin, epigallocatechin), isoflavones (daidzein, genistein, glycitein) and anthocyanins (e.g. cyanidin, malividine, dolphinidine) (7).
Polyphenols are commonly found in diets containing fruits, vegetables, cereals, chocolate and dry legumes. However, fruits, fruit juices, plant-based beverages, tea and coffee are the main source of these compounds (8).
Tea is a water infusion of Camellia sinensis leaves. There are many types of teas, with black, green, white, red (pu-erh) and ulung (oolong) teas being most popular. Tea leaves contain about 36% of polyphenols, most of which (about 80%) are catechins. Catechins such as epigallocatechin gallate, epicatechin gallate, epigallocatechin and epicatechin are the most important ingredients for oral health. They belong to oxidised polyphenols collectively referred to as tannins (1). A number of studies demonstrated the inhibitory effects of tea polyphenols on caries. A study in rats on a cariogenic diet supplemented with 0.1% of green tea polyphenols demonstrated a 40% inhibition of caries (9). The anticariogenic effects of extracts from different types of tea involve the inhibition of the growth of cariogenic bacteria and thus their production of acids, inhibition of bacterial glucosyltransferase activity, reduction of Streptococcus mutans adherence to dental surface as well as inhibition of salivary alpha-amylase. Polyphenols extracted from black and red tea showed in vitro activity against planktonic Streptococcus mutans and Streptococcus sobrinus as well as reduced the proportion of acid producing bacteria (10-12). A significant reduction of salivary Streptococcus mutans and Lactobacilli spp. was observed after oral rinsing (3 times a day for one week) with green tea extract (13). Awadella et al. (14) showed a significant reduction of salivary and plaque Streptococcus mutans as well as reduced gingival bleeding index (GBI) after 7 days of oral rinsing (3 x daily) with 2% green tea infusion. Oral rinsing with epigallocatechin gallate, which is one of green tea catechins, followed by oral rinsing with sucrose solution resulted in a lower decrease in plaque pH indicating reduced acid production by bacterial flora (15). Therefore, it may be suggested that drinking green tea after a meal containing fermentable carbohydrates may help maintain plaque pH above the demineralising threshold, and thus prevent caries. This is also confirmed by clinical obeservrtions showing that children habitually drinking 1-3 cups of tea daily had significantly lower DMFT and plaque index values compared to those drinking only 1-2 cups weekly (16). In vivo studies demonstrated that oral rinsing with 1.5% black tea infusion after consumption of crackers inhibited the activity of alpha-amylase, an enzyme hydrolysing starch to maltose and other low-molecular weight carbohydrates, which are the substrate for acid producing bacteria (17). Tea is also a source of fluoride, the content of which ranges between 0.34 to 3.71 ppm, depending on the species and the place of growing (18). Therefore, the anti-cariogenic activity of tea may result from both, the antibacterial effects of polyphenols and the effects of fluoride on the demineralisation and remineralisation processes.
Coffee is a source of multiple bioactive compounds, including polyphenols (tannins), caffeine and antioxidants. The content of these compounds varies depending on the type of coffee and how it is prepared. Green and roasted coffee extracts of the two most commonly used types of Coffea arabica nd Coffea robusta impair Streptococus mutans adsorption to a hydroxyapatite coated by saliva. Trygonelin, caffeine, chlorogenic acid are active compounds contained in coffee. They are adsorbed to the teeth, preventing the interaction between tooth surface receptors and bacterial adhesins. Furthermore, an inhibition of bacterial glucosyltransferase was observed (19). A similar activity was shown for boiled and unboiled aqueous solutions of commercially available coffee, both ground and instant (1, 13, 20). Anila Namboodiripad and Kori (21) showed lower DMFT (2.9) values in individuals with long-term consumption of coffee with no sugar or milk compared to those who did not consume coffee (4.0) or consumed coffee with sugar and milk (5.5). Thus coffee can help in the prevention of dental caries if consumed without additives.
Grain coffee, which is produced from roasted cereal grains, is also a source of polyphenols. Roasted barley coffee, e.g. Inka beverage containing about 72% of roasted cereal (barley, rye) as well as chicory and sugar beet, is a popular beverage. It was shown that roasted barley coffee contains anti-adhesive components, which inhibit Streptococcus mutans adsorption to hydroxyapatite (22). Roasted and ground chicory root beverage is a substitute for real coffee. It also contains polyphenols. Antimicrobial activity of 100% chicory solution against Streptococcus mutans, manifested in a reduced number of bacterial colonies, was shown. The addition of chicory to natural coffee reduced both the number of microorganisms and bacterial adhesion. Therefore, both chicory and coffee exhibit anticariogenic activity via different mechanisms of action, i.e. chicory has antibacterial activity, whereas coffee inhibits the adherence of cariogenic bacteria (23).

Powyżej zamieściliśmy fragment artykułu, do którego możesz uzyskać pełny dostęp.
Mam kod dostępu
  • Aby uzyskać płatny dostęp do pełnej treści powyższego artykułu albo wszystkich artykułów (w zależności od wybranej opcji), należy wprowadzić kod.
  • Wprowadzając kod, akceptują Państwo treść Regulaminu oraz potwierdzają zapoznanie się z nim.
  • Aby kupić kod proszę skorzystać z jednej z poniższych opcji.

Opcja #1

29

Wybieram
  • dostęp do tego artykułu
  • dostęp na 7 dni

uzyskany kod musi być wprowadzony na stronie artykułu, do którego został wykupiony

Opcja #2

69

Wybieram
  • dostęp do tego i pozostałych ponad 7000 artykułów
  • dostęp na 30 dni
  • najpopularniejsza opcja

Opcja #3

129

Wybieram
  • dostęp do tego i pozostałych ponad 7000 artykułów
  • dostęp na 90 dni
  • oszczędzasz 78 zł
Piśmiennictwo
1. van Loveren C, Broukal Z, Oganessian E: Functional foods/ingredients and dental caries. Eur J Nutr 2012; 51 (suppl. 2): S15-S25.
2. Gazzani G, Daglia M, Papetti A: Food components with anticaries activity. Curr Opin Biotechnol 2012; 23: 153-159.
3. Signoretto C, Canepari P, Stauder M et al.: Functional foods and strategies contrasting bacterial adhesion. Curr Opin Biotechnol 2012; 23: 160-167.
4. Cheng L, Li J, He L, Zhou X: Natural products and caries prevention. Caries Res 2015; 49 (suppl. 1): 38-45.
5. Sandhu KS, Gupta N, Gupta P et al.: Caries protective food: A futuristic perspective. Int J Adv Health Sci 2014; 1: 21-25.
6. Petti P, Scully C: Polyphenols, oral health and disease: A review. J Dent 2009; 37: 413-423.
7. Gheribi E: Związki polifenolowe w owocach i warzywach. Med Rodz 2011; 4: 111-115.
8. Lolayekar N, Shanbhang C: Polyphenols and oral health. RSBO 2012; 9: 74-84.
9. Sakanaka S, Shimura N, Aizawa M et al.: Preventive effect of green tea polyphenols against dental caries in conventional rats. Biosci Biotech Biochem 1992; 56: 592-594.
10. Wu CD: The impact of food components and dietary factors on oral health. J Food Drug Analysis 2012; 20 (suppl. 1): 270-274.
11. Goenka P, Sarawgi A, Karun V et al.: Camellia sinensis (Tea): Implications and role in preventing dental decay. Pharmacogn Rev 2013; 7: 152-156.
12. Sasaki H, Matsumoto M, Tanaka T et al.: Antibacterial activity of polyphenol components in oolong tea extract against Streptococcus mutans. Caries Res 2004; 38: 2-8.
13. Ferrazzano GF, Roberto L, Amato I et al.: Antimicrobial properties of green tea extract against cariogenic microflora: an in vivo study. J Med Food 2011; 14: 907-911.
14. Awadella HI, Rgab MH, Fayed MT et al.: Evaluation of the effect of green tea on dental caries and composite restorations. TAF Prev Med Bull 2011; 10: 269-274.
15. Hirasawa M, Takada K, Otake S: Inhibition of acid production in dental plaque bacteria by green tea catechins. Caries Res 2006; 40: 265-270.
16. Elvin-Lewis M, Steelman R: The anticariogenic effects of tea drinking among Dallas school children. J Dent Res 1986; 65: 198.
17. Arya V, Taneja L: Inhibition of salivary amylase by black tea in high-caries and low-caries index children: A comparative in vivo study. Ayu 2015; 36: 278-282.
18. Chan JT, Koh SH: Fluoride content in caffeinated, decaffeinated and herbal teas. Caries Res 1996; 30: 88-92.
19. Namboodiripad PC, Srividya K: Can coffee prevent caries? An in vitro study. Internet J Dent Sci 2009; 7: 2-5.
20. Daglia M, Tarsi R, Papetti A et al.: Antiadhesive effect of green and roasted coffee on Streptococcus mutans’ adhesive properties on saliva-coated hydroxyapatite beads. J Agric Food Chem 2002; 50: 1225-1229.
21. Anila Namboodiripad P, Kori S: Can coffee prevent caries? J Conserv Dent 2009; 12: 17-21.
22. Papetti A, Pruzzo C, Daglia M et al.: Effect of barley coffee on the adhesive properties of oral streptococci. J Agric Food Chem 2007; 55: 278-284.
23. Sharma R, Reddy VK, Prashant G et al.: Antimicrobial and anti-adherence activity of various combinations of coffee-chicory solutions on Streptococcus mutans: An in vitro study. J Oral Maxillofac Pathol 2014; 18: 201-206.
24. Nirmala S, Quadar MA, Veluru S: pH modulation and salivary sugar clearance of different chocolates in children: A randomized clinical trial. J Indian Soc Pedod Prev Dent 2016; 34: 10-16.
25. Ito K, Nakamura Y, Tokunaga T et al.: Anti-cariogenic properties of a water-soluble extract from cacao. Biosci Biotechnol Biocem 2003; 67: 2567-2573.
26. Osawa K, Miyazaki K, Shimura S et al.: Identification of cariostatic substances in the cacao bean husk: their anti-glucosyltransferase and antibacterial activities. J Dent Res 2001; 80: 2000-2004.
27. Moynihan P, Petersen PE: Diet, nutrition and the prevention of dental disease. Publ Health Nutr 2004; 7: 201-226.
28. Stephan RM: Effects of different types of human foods on dental health in experimental animals. J Dent Res 1996; 45: 1551-1561.
29. Grobler SR, Blignaut JB: The effect of a high consumption of apples or grapes on dental caries and periodontal disease in humans. Clin Prev Dent 1989; 11: 8-12.
30. Wu CD: Grape products and oral health. J Nutr 2009; 139 (suppl.): 1818S-1823S.
31. Daglia M, Papetti A, Grisoli P et al.: Antibacterial activity of red and white wine against oral streptococci. J Agric Food Chem 2007; 55: 5038-5042.
32. Wong A, Young DA, Emmanouil DE et al.: Raisins and oral health. J Food Sci 2013; 78 (suppl. 1): A26-A29.
33. Weiss EI, Kozlovsky A, Steinberg D et al.: A high molecular mass cranberry constituent reduces mutans streptococci level in saliva and inhibits in vitro adhesion to hydroxyapatite. FEMS Microbiol Lett 2004; 232: 89-92.
34. Koo H, Nino de Guzman P, Schobel BD et al.: Influence of cranberry juice on glucan-mediated processes involved in Streptococcus mutans biofilm development. Caries Res 2006; 40: 20-27.
35. Li L, Guo L, Wolinsky L et al.: The antimicrobial activity of pomegranate polyphenol extract (POMx) lozenges in a saliva-derived biofilm model system. Dent Open 2015; 2: 112-120.
36. Ikeno K, Ikeno T, Miyazawa C: Effects of propolis on dental caries in rats. Caries Res 1991; 25: 347-351.
37. Suzuki CO, Date CE, Suza DC, Schemizuj MT: Influence of propolis on caries – an in vivo study in rats. Revista Saude 2009; 3: 20-24.
38. Duailibe SA, Gonçalves AG, Ahid FJ: Effect of a propolis extract on Streptococcus mutans counts in vivo. J Appl Oral Sci 2007; 15: 420-423.
39. Prabhakar AR, Karuna YM, Yavagal C, Deepak BM: Cavity disinfection in minimally invasive dentistry – comparative evaluation of Aloe vera and propolis: A randomized clinical trial. Contemp Clin Dent 2015; 6 (suppl. 1): S24-S31.
40. Mohsin S, Manohar B, Rajesh S, Asif Y: The effects of a dentifrice containing propolis on Mutans Streptococci: a clinico-microbiological study. Ethiop J Health Sci 2015; 25: 9-16.
41. De Luca MP, Franca JR, Macedo FA et al.: Propolis varnish: antimicrobial properties against cariogenic bacteria, cytotoxicity, and sustained-release profile. Biomed Res Int 2014; 2014: 348647. DOI: 10.1155/2014/348647.
42. Opara EI, Chohan M: Culinary herbs and spices: their bioactive properties, the contribution of polyphenols and the challenges in deducing their true health benefit. Int J Mol Sci 2014; 15: 19183-19202.
43. Uju DE, Obioma NP: Anticariogenic potentials of clove, tobacco and bitter kola. Asian Pac J Trop Med 2011; 4: 814-818.
44. Marya CM, Satija G, Avinash J et al.: In vitro inhibitory effect of clove essential oil and its two active principles on tooth decalcification by apple juice. Int J Dent 2012; 2012: 759618.
45. Gupta C, Kumari A, Garg AP et al.: Comparative study of cinnamon oil and clove oil on some oral microbiota. Acta Biomed 2011; 82: 197-199.
46. Hasan S, Danishuddin M, Khan AU: Inhibitory effect of zingiber officinale towards Streptococcus mutans virulence and caries development: in vitro and in vivo studies. BMC Microbiol 2015; 15: 1. DOI: 10.1186/s12866-014-0320-5.
47. Chung JY, Choo JH, Lee MH, Hwang JK: Anticariogenic activity of macelignan isolated from Myristica fragrans (nutmeg) against Streptococcus mutans. Phytomedicine 2006; 13: 261-266.
48. Borhan-Mojabi K, Sharifi M, Karagah T: Efficacy of different concentrations of garlic extract in reduction of oral salivary microorganisms. Arch Iran Med 2012; 15: 99-101.
49. Chavan SD, Shetty NL, Kanuri M: Comparative evaluation of garlic extract mouthwash and chlorhexidine mouthwash on salivary Streptococcus mutans count – an in vitro study. Oral Health Prev Dent 2010; 8: 369-374.
50. Ahn S-J, Song Y-D, Mah S-J et al.: Determination of optimal concentration of deglycyrrhizinated licorice root extract for preventing dental caries using a bacterial model system. J Dent Sci 2014; 9: 214-220.
51. Davis BA, Raubertas RF, Pearson SK, Bowen WH: The effects of benzoate and fluoride on dental caries in intact and desalivated rats. Caries Res 2001; 35: 331-337.
52. Arweiler NB, Lenz R, Sculean A et al.: Effect of food preservatives on in situ biofilm formation. Clin Oral Investig 2008; 12: 203-208.
otrzymano: 2017-04-10
zaakceptowano do druku: 2017-04-28

Adres do korespondencji:
*Urszula Kaczmarek
Katedra i Zakład Stomatologii Zachowawczej i Dziecięcej Uniwersytet Medyczny im. Piastów Śląskich we Wrocławiu
ul. Krakowska 26, 50-425 Wrocław
tel. +48 (71) 784-03-61
urszula.kaczmarek@umed.wroc.pl

Nowa Stomatologia 2/2017
Strona internetowa czasopisma Nowa Stomatologia