Malwina Kolasa1, Joanna Szczepańska2
Direct pulp capping in permanent teeth in children – tertiary dentin formation, materials used. Part II
Bezpośrednie pokrycie miazgi w zębach stałych u dzieci – tworzenie zębiny trzeciorzędowej, stosowane materiały. Część II
1Doctoral studies, Department of Developmental Age Dentistry, Medical University of Łódź
Head of Department: Professor Joanna Szczepańska, MD, PhD
2Department of Developmental Age Dentistry, Medical University of Łódź
Head of Department: Professor Joanna Szczepańska, MD, PhD
Streszczenie
Pokrycie bezpośrednie polega na aplikacji środka leczniczego na miazgę obnażoną mechanicznie lub urazowo. Nadrzędnym warunkiem powodzenia terapii jest odpowiedni stan kliniczny miazgi, która powinna być zdrowa lub objęta odwracalnym procesem zapalnym. Metoda jest szczególnie polecana w leczeniu młodych zębów stałych ze względu na wysoki potencjał regeneracyjny miazgi. U jej podstaw leży zdolność odontoblastów do tworzenia mostu zębinowego poprzez odkładanie zębiny trzeciorzędowej. W przypadku obnażenia miazgi warstwa odontoblastów obumiera i musi być zastąpiona przez nową populację odontoblastów wyróżnicowaną z komórek macierzystych miazgi pod wpływem działania leku aplikowanego na miazgę. Stosowana do pokrycia miazgi substancja, poza właściwościami odontotropowymi oraz zdolnością stymulacji do wytwarzania zadowalającego jakościowo mostu zębinowego, powinna być biozgodna, przylegać do tkanek zęba oraz ich nie przebarwiać, a także nie rozpuszczać się w płynie z kanalików zębinowych ani w wodzie. Dotychczas nie odkryto środka, który spełniałby wszystkie wyżej wymienione warunki, dlatego niezwykle istotne jest ciągłe prowadzenie badań mających na celu wynalezienie substancji dającej najlepsze rezultaty w pokryciu bezpośrednim miazgi.
Summary
Direct pulp capping involves placing therapeutic material on mechanically or traumatically exposed pulp. The most essential requirement of therapeutic success is clinical state of the pulp which should be healthy or in reversible pulpitis. The method is particularly recommended for young permanent teeth due to the high regenerative potential of dental pulp. The mechanisms underlying these repair processes involve the ability of odontoblasts to form dentin bridges via tertiary dentin deposition. If pulp exposure occurs, a layer of odontoblasts is killed and must be replaced with a new odontoblastic population, which differentiates from pulpal stem cells under the influence of a therapeutic agent applied on the pulp. In addition to odontotropic properties and the ability to stimulate production of qualitatively satisfying dentinal bridge, the substance used for pulp capping should be biocompatible, not stain dental tissues, exhibit good adhesion to them, and insolubility in dentin tubule fluid or water. So far an agent which meets all the requirements mentioned above has not been invented. It is crucial to continue research to develop a substance that will yield the best effects in direct pulp capping.
Introduction
Biological pulp treatment plays a particularly important role in the exposure of pulp in young permanent teeth. Direct pulp capping in teeth with incomplete root development is characterised by high success rates and allows for the continuation of apexogenesis. Direct pulp capping is used only in certain clinical situations, which are indications for the procedure. Pulp exposure should have traumatic or mechanical aetiology, and the dental pulp should be either healthy or reversibly inflamed. If the above-mentioned criteria are met, no pathological clinical symptoms or lesions are revealed by the X-ray and tooth separation from the oral environment is possible, there is a good chance of therapeutic success of direct pulp capping.
Tertiary dentin formation
In order to fully understand the mechanisms of pulp treatment using biological methods, it is necessary to analyse the processes leading to the formation of tertiary dentin, a tissue that underlies the success of the discussed therapy.
Tertiary dentin is a type of dentin that forms in response to pathological external stimuli. Its role is to protect the pulp. Lesot et al. (1) were the first to postulate that two types of tertiary dentin need to be distinguished. According to the author, tertiary dentin formed by primary osteoblasts should be referred to as reactive dentin, while dentin produced by newly differentiated odontoblasts or odontoblast-like cells should be referred to as reparative dentin. The classification was widely accepted due to its possible use in the histological context (2). Since the mechanisms underlying the formation of these two types of tertiary dentin vary, it is necessary to use different treatment strategies. These strategies will depend on the degree of pulp destruction as well as on whether the layer of primary osteoblasts was destroyed.
Reactive dentin forms in pulpal response to an early or slowly progressing stimulus, such as caries, non-cariogenic lesions or dental materials/medications. This type of dentin is formed by healthy odontoblasts at the site of the stimulus action between the pulp and the physiological dentin. If pulp irritation by the stimulus is only minor, as in the case of physiological tooth wear, reactive dentin grows slowly and its structure may not differ significantly from secondary dentin. In the case of stronger stimuli, the structure of dentin is more irregular; however, it is always more or less tubular (2). Indirect capping is a treatment method that affects the formation of reactive dentin.
In the case of major damage or severe pulp irritation, the superficial layer of primary odontoblasts is killed. Undifferentiated mesenchymal cells or dental pulp stem cells are transferred into newly-differentiated generation of odontoblasts, which, along with odontoblast-like cells, form a non-tubular structure, i.e. reparative dentin (2, 3). This mechanism underlies pulp treatment by means of direct capping. Therefore, dental material used for this purpose should be able to stimulate pulp stem cells to differentiate into a new population of odontoblasts.
Materials currently used for direct pulp capping
Perfect material for direct pulp capping should stimulate reparative processes within the pulp, tightly adhere to dental tissues, as well as be biocompatible, cause no dental tissue discolouration and be insoluble in water and dentin tubule fluid. So far, no material has been developed that would meet all these criteria.
Calcium hydroxide
The history of introducing calcium hydroxide as an agent used for direct pulp capping dates back to the early 1930s. The material was introduced into medical practice by Herrmann and for many decades it was considered to be the gold standard in direct pulp capping (4). Calcium hydroxide is used in dentistry in a setting or a non-setting form, with the latter one used in direct pulp capping.
The action of calcium hydroxide involves the release of hydroxyl ions, which alkalise the environment and have antibacterial effects. The development of superficial necrosis is the initial result of its direct contact with the pulp. Minor inflammation develops under the necrotic layer, which stimulates the pulp to defence, i.e. odontoblast differentiation and the formation of dentin bridge (5-7).
Disadvantages of calcium hydroxide include its poor mechanical and physical properties, formation of irregular and porous dentin bridge with evident defects as well as its solubility in dentinal fluid and acids. Also, calcium hydroxide does adhere to hard tissues. The above listed factors contribute to bacterial microleakage, which is one of the main causes of direct pulp capping failure. Calcium hydroxide initiates calcifying processes in the pulp, leading to pulp chamber mineralization, which may hinder the potential future endodontic treatment. Long-term success rates for direct pulp capping with the use of Ca(OH)2 range between 13% and 96%, depending on the author (8). The long-term use of calcium hydroxide as the only agent for biological dental procedures revealed its many advantages, but also many drawbacks, which motivated the search for alternative products described below.
MTA
Mineral trioxide aggregate (MTA) is a material with significantly improved physical properties and lower complication rates compared to calcium hydroxide, which has recently gained popularity. Calcium hydroxide is the main reaction product of MTA and water.
MTA shows good mechanical strength as well as odontotropic, antibacterial and antifungal properties. Due to its limited solubility in tissue fluids, MTA does not undergo resorption as opposed to Ca(OH)2, which improves its sealing efficacy and reduces the risk of microleakage. Furthermore, it is non-toxic towards pulp cells and produces X-ray contrast owing to the addition of bismuth oxide. There are two types of MTA: Grey Mineral Trioxide Aggregate (GMTA) and White Mineral Trioxide Aggregate (WMTA), which was developed to avoid dental discolouration, which occurs after GMTA. WMTA presents longer setting time and, according to some authors, worse physical properties of the formed bridge than GMTA. Other researchers found no statistically significant differences in the thickness of GMTA and WMTA-induced dentin bridge (9).
A more rapid formation of a thicker and more homogeneous dentin bridge is an advantage of MTA over Ca(OH)2 (9, 10). Furthermore, MTA-induced inflammation is milder and short-lasting compared to Ca(OH)2 (9-11). In most studies, long-term success rates for MTA are higher compared to Ca(OH)2 (10, 12).
Biodentine
Powyżej zamieściliśmy fragment artykułu, do którego możesz uzyskać pełny dostęp.
Mam kod dostępu
- Aby uzyskać płatny dostęp do pełnej treści powyższego artykułu albo wszystkich artykułów (w zależności od wybranej opcji), należy wprowadzić kod.
- Wprowadzając kod, akceptują Państwo treść Regulaminu oraz potwierdzają zapoznanie się z nim.
- Aby kupić kod proszę skorzystać z jednej z poniższych opcji.
Opcja #1
29 zł
Wybieram
- dostęp do tego artykułu
- dostęp na 7 dni
uzyskany kod musi być wprowadzony na stronie artykułu, do którego został wykupiony
Opcja #2
69 zł
Wybieram
- dostęp do tego i pozostałych ponad 7000 artykułów
- dostęp na 30 dni
- najpopularniejsza opcja
Opcja #3
129 zł
Wybieram
- dostęp do tego i pozostałych ponad 7000 artykułów
- dostęp na 90 dni
- oszczędzasz 78 zł
Piśmiennictwo
1. Lesot H, Bègue-Kirn C, Kubler MD et al.: Experimental induction of odontoblast differentiation and stimulation during reparative process. Cells Materials 1993; 3: 201-207.
2. Tjäderhane L, Haapasalo M: The dentin-pulp border: a dynamic interface between hard and soft tissues. Endod Topics 2009; 20: 52-84.
3. Holland GR, Botero TM: Pulp biology: 30 years of progress. Endod Topics 2014; 31: 19?35.
4. Qureshi A, Soujanya E, Nandakumar et al.: Recent advances in pulp capping materials: An overview. J Clin Diagn Res 2014; 8: 316-321.
5. Komabayashi T, Zhu Q, Eberhart R, Imai Y: Current status of direct pulp-capping materials for permanent teeth. Dent Mater J 2016; 35: 1-12.
6. Dahl JE, ?rstavik D: Responses of the pulp-dentin organ to dental restorative biomaterials. Endod Topics 2007; 17: 65-73.
7. Ricucci D, Loghin S, Lin LM et al.: Is hard tissue formation in the dental pulp after the death of the primary odontoblasts a regenerative or a reparative process? J Dent 2014; 42: 1156-1170.
8. Torabinejad M, Abu-Tahun I: Management of teeth with necrotic pulps and open apices. Endod Topics 2012; 23: 105-130.
9. Parirokh M, Asgary S, Eghbal MJ et al.: A comparative study of using a combination of calcium chloride and mineral trioxide aggregate as the pulp-capping agent on dogs’ teeth. J Endod 2011; 37: 786-788.
10. Li Z, Cao L, Fan M, Xu Q: Direct pulp capping with calcium hydroxide or mineral trioxide aggregate: a meta-analysis. J Endod 2015; 41: 1412-1417.
11. Accorinte M de L, Holland R, Reis A et al.: Evaluation of mineral trioxide aggregate and calcium hydroxide cement as pulp-capping agents in human teeth. J Endod 2008; 34: 1-6.
12. Hilton TJ, Ferracane JL, Mancl L: Comparison of CaOH with MTA for direct pulp capping: a PBRN randomized clinical trial. J Dent Res 2013; 92: 16-22.
13. Laurent P, Camps J, About I: BiodentineTM induces TGF-β1 release from human pulp cells and early dental pulp mineralization. Int Endod J 2012; 45: 439-448.
14. Nowicka A, Wilk G, Lipski M et al.: Tomographic evaluation of reparative dentin formation after direct pulp capping with Ca(OH)2, MTA, Biodentine, and dentin bonding system in human teeth. J Endod 2015; 41: 1234-1240.
15. Chang SW, Lee SY, Kum KY, Kim EC: Effects of Pro-Root MTA, Bioaggregate, and Micromega MTA on odontoblast differentiation of human dental pulp cells. J Endod 2014; 40: 113-118.
16. Chung CR, Kim E, Shin SJ: Biocompatibility of bioaggregate cement on human pulp and periodontal ligament (PDL) derived cells. J Korean Acad Conserv Dent 2010; 35: 473-478.
17. Zhang J, Zhu L, Peng B: Effect of BioAggregate on osteoclast differentiation and inflammatory bone resorption in vivo. Int Endod J 2015; 48: 1077-1085.
18. Jung J-Y, Woo S-M, Lee B-N et al.: Effect of Biodentine and Bioaggregate on odontoblastic differentiation via mitogen-activated protein kinase pathway in human dental pulp cells. Int Endod J 2015; 48: 109-114.
19. Asgary S: Medical and dental biomaterial and method of use for the same. US Patent No. 8,105,086. 2012.
20. Abbaszadegan A, Shams MS, Jamshidi Y et al.: Effect of calcium chloride on physical properties of calcium?enriched mixture cement. Aust Endod J 2015; 3: 117-121.
21. Mozayeni MA, Milani AS, Marvasti LA, Asgary S: Cytotoxicity of calcium enriched mixture cement compared with mineral trioxide aggregate and intermediate restorative material. Aust Endod J 2012; 38: 70-75.
22. Asgary S, Eghbal MJ, Parirokh M et al.: A comparative study of histologic response to different pulp capping materials and a novel endodontic cement. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2008; 106: 609-614.
23. Asgary S, Eghbal MJ, Parirokh M et al.: Comparison of mineral trioxide aggregate’s composition with Portland cements and a new endodontic cement. J Endod 2009; 35: 243-250.
24. Woo S-M, Lim H-S, Jeong K-Y et al.: Vitamin D Promotes Odontogenic Differentiation of Human Dental Pulp Cells via ERK Activation. Mol Cells 2015; 38: 604-609.
25. El Ashry S, Abu-Seida A, Emara R: The influence of addition of osteogenic supplements to mineral trioxide aggregate on the gene expression level of odontoblastic markers following pulp capping in dog. Vet Arhiv 2016; 86: 685-697.
26. Moazzami F, Ghahramani Y, Tamaddon AM et al.: A Histological Comparison of a New Pulp Capping Material and Mineral Trioxide Aggregate in Rat Molars. Iran Endod J 2014; 9: 50-55.
27. Angeletakis C: Resorbable and curable compositions for use in dentistry. Patent Application Publication, USA 2014. US 2014/0227665 A1.
28. Njeh A, Uzunoğlu E, Ardila-Osorio H et al.: Reactionary and reparative dentin formation after pulp capping: Hydrogel vs. Dycal. Evid Based Endod 2016; 1: 3.
29. Qian J, Jiayuan W, Wenkai J et al.: Basic fibroblastic growth factor affects the osteogenic differentiation of dental pulp stem cells in a treatment-dependent manner. Int Endod J 2014; 48: 690-700.
30. Lianjia Y, Yuhao G, White FH: Bovine bone morphogenetic protein-induced dentinogenesis. Clin Orthop Relat Res 1993; 295: 305-312.
31. Lovschall H, Fejerskov O, Flyvbjerg A: Pulp-capping with recombinant human insulin-like growth factor I (rhIGF-I) in rat molars. Adv Dent Res 2001; 15: 108-112.
32. Nowicka A, Łagocka R, Lipski M et al.: Clinical and Histological Evaluation of Direct Pulp Capping on Human Pulp Tissue Using a Dentin Adhesive System. BioMed Res Int, vol. 2016, Article ID 2591273.
33. Nowicka A, Parafiniuk M, Lipski M et al.: Pulpo-dentin complex response after direct capping with self-etch adhesive systems. Folia Histochem Cytobiol 2012; 50: 565-573.
34. Accorinte ML, Loguercio AD, Reis A, Costa CA: Response of human pulps capped with different self-etch adhesive systems. Clin Oral Investig 2008; 12: 119-127.
35. Silva GA, Gava E, Lanza LD et al.: Subclinical failures of direct pulp capping of human teeth by using a dentin bonding system. J Endod 2013; 39: 182-189.
36. Parthasarathy A, Kamat SB, Kamat M, Kidiyoor KH: Histological response of human pulps capped with calcium hydroxide and a self-etch adhesive containing an antibacterial component. J Conserv Dent 2016; 19: 274-279.
37. Lu Y, Liu T, Li H, Pi G: Histological evaluation of direct pulp capping with a self-etching adhesive and calcium hydroxide on human pulp tissue. Int Endod J 2008; 41: 643-650.
38. Fernandes AM, Silva GA, Lopes N Jr et al.: Direct capping of human pulps with a dentin bonding system and calcium hydroxide: An immunohisto-chemical analysis. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2008; 105: 385-390.
39. Olsson H, Davies JR, Holst KE et al.: Dental pulp capping: effect of Emdogain Gel on experimentally exposed human pulps. Int Endod J 2005; 38: 186-194.
40. Kiatwateeratana T, Kintarak S, Piwat S et al.: Partial pulpotomy on caries-free teeth using enamel matrix derivative or calcium hydroxide: a randomized controlled trial. Int Endod J 2009; 42: 584-592.
41. Fransson H, Petersson K, Davies JR: Dentine sialoprotein and Collagen I expression after experimental pulp capping in humans using Emdogain Gel. Int Endod J 2011; 44: 259-267.
42. Riksen EA, Landin MA, Reppe S et al.: Enamel Matrix Derivative Promote Primary Human Pulp Cell Differentiation and Mineralization. Int J Mol Sci 2014; 15: 7731-7749.
43. Fransson H, Wolf E, Petersson K: Formation of a hard tissue barrier after experimental pulp capping or partial pulpotomy in humans: an updated systematic review. Int Endod J 2016; 49: 533-542.