© Borgis - Postępy Nauk Medycznych 7/2011, s. 553-559
*Monika Dzierżak-Mietła1, Mirosław Markiewicz1, Urszula Siekiera2, Sławomira Kyrcz-Krzemień1
Występowanie niezgodności słabych antygenów zgodności tkankowej w allogenicznych przeszczepieniach komórek krwiotwórczych od zgodnego w układzie HLA rodzeństwa
Occurrence of minor histocompatibility antigens’ disparities in allogeneic hematopoietic stem cell transplantation recipients and their HLA-matched siblings
1Hematology and Bone Marrow Department, Medical University of Silesia, Katowice
Head: prof. Sławomira Kyrcz-Krzemień
2Immunogenetics and HLA Laboratory, Regional Blood Center, Katowice
Head: dr Stanisław Dyląg
Streszczenie
Oznaczyliśmy allele jedenastu słabych antygenów zgodności tkankowej (mHAg) i zbadaliśmy występowanie ich immunogennych niezgodności pomiędzy dawcą i biorcą w 35 allogenicznych przeszczepieniach komórek krwiotwórczych od zgodnego w układzie HLA rodzeństwa wykonanych z zastosowaniem przygotowania mieloablacyjnego w latach 2000-2008. Niezgodności były ukierunkowane w stronę przeszczep-przeciw gospodarzowi (GVH) lub gospodarz-przeciw przeszczepowi (HVG). Analiza częstości występowania alleli, genotypów i fenotypów, uwzględniająca występowanie odpowiednich antygenów restrykcyjnych HLA pozwoliła na oszacowanie prawdopodobieństwa wystąpienia immunogennej niezgodności. Następnym etapem pracy będzie zbadanie związku pomiędzy wykrytymi niezgodnościami mHAg pomiędzy dawcą i biorcą a przebiegiem klinicznym procedury przeszczepowej.
Summary
We have determined the alleles of eleven minor histocompatibility antigens (mHAgs) and investigated the occurrence of immunogenic mHAgs mismatches between a donor and a recipient of allogeneic hematopoietic stem cell transplantation (alloHSCT) from HLA-matched sibling donors in 35 recipients after myeloablative conditioning between 2000 and 2008. Mismatches were either graft-versus-host or host-versus-graft directed. The frequency analysis of mHAg alleles, genotypes and phenotypes accompanied by appropriate restriction HLA antigens allowed for estimation of the probability of immunogenic mismatches. The investigation of the association of detected immunogenic mHAgs mismatches between a donor and a recipient with a course of alloHSCT is warranted.
Introduction
The allogeneic hematopoietic stem cell transplantation (alloHSCT) constitutes a recommended therapy of many proliferative, especially hemato-oncologic diseases. Despite the fact, that hematopoietic stem cell transplantology develops very dynamically, and almost 40 years have passed since the first alloHSCT, early and late complications of post-transplant care remain unresolved. Early complications include conditioning toxicity (nausea, vomitus, alopecia, hemorrhagic cystitis, sinusoidal obstruction syndrome, interstitial pneumonia, thrombotic microangiopathy), pancytopenia with related infections and acute graft-versus-host disease (a-GVHD). Late complications include those related to conditioning toxicity (infertility, cataract, hypothyreosis, secondary malignancies) and chronic graft-versus-host disease (cGVHD).
Although the prognosis after alloHSCT depends mainly of the disease, long survival is being estimated in the range of 40-70%. Infectious complications and GVHD (30-40%), organ toxicity of chemotherapy (20%) and relapse (20-30%) are the most frequent causes of failures.
The possession of a HLA-matched donor is a key requirement for alloHSCT therapy. Tissue histocompatibility is determined by genes of major histocompatibility complex (MHC), which in man is known as a HLA (human leukocyte antigens). The genes encoding HLA antigens system are located in the short arm of chromosome 6. The products of the HLA genes can be divided into class I (HLA-A,-B,-C) and class II (HLA-DP,-DQ,-DR) molecules. Class I HLA antigens are expressed on most of nucleated cells, excluding red blood cells and cells of the nervous system, while class II HLA molecules occur mainly on B cells, macrophages, dendritic cells and thymic epithelial cells. Molecules of both classes differ in structure, tissue distribution and characteristics of peptide presentation to T-lymphocytes which plays a major role in creating immunity. HLA typing- key element of donor-recipient pair matching- is managed with use of serological and more accurate bio-molecular methods based on identification of HLA-antigens encoding DNA.
The DNA typing methods include:
a) specific sequences of DNA nucleotides (SSOP – sequence-specific oligonucleotide probe),
b) DNA sequence-specific primers (SSP – sequence specific primers),
c) direct nucleotide sequencing (SBT – sequence based typing),
d) other methods such as using a hetero-duplex analysis.
Matching of HLA compatible donor is the most important single factor determining the outcome of allogeneic transplantation, affecting the possible loss of graft, the incidence and severity of GVHD and survival.
Siblings are the first to be tested in order to find an optimal donor of hematopoietic cells. The odds ratio for HLA compatibility in siblings is 1:4. The probability of having a compatible donor among siblings by a particular patient is determined by the formula 1- (0.75)n, where n is the number of possessed siblings. In case of the absence of siblings or lack of compliance, search of an unrelated donor is performed. When not successful, it is followed by an alternative donor search, i.e. an unrelated HLA mismatched, or donor from extended family.
The probability of finding an unrelated donor is dependent upon the prevalence of certain haplotypes in the general population. Odds ratio of finding an unrelated donor is about 1:10 000, but in case of a search of world registers which contain search determinants currently of more than 15 million donors, it is possible to find one for the majority of patients in need.
Unfortunately, failure of treatment is observed in some patients despite full HLA-match of donor-recipient pair, a state of disease remission before transplantation and the best course of transplant procedure. Excluding the possibility of incorrect HLA typing it can be suspected, that mismatched minor histocompatibility antigens (mHAgs) may be responsible. These antigens belong to a very heterogeneous group of peptides, usually composed of 9-12 amino-acids. Disparities in the mHAgs result from polymorphism of amino-acids which they are composed of, as a consequence of polymorphisms of genes encoding them. The product of each polymorphic gene in combination with molecules of the major histocompatibility complex MHC may induce a response and act as a transplant mHAg. mHAg are encoded by autosomal genes or gender genes located on the Y chromosome, which thus do not occur in women. Most of mHAgs are encoded by one immunogenic and one non-immunogenic allele, and in fact one allele determines the potential strength of their immunogenicity. mHAgs are being presented after binding to the appropriate binding site of the HLA class I or class II molecule. The dependence of mHAgs immunogenicity from the presence of specific HLA molecule possessing an adequate peptide binding site specific for each particular mHAg is called MHC restriction. Autosomal and Y-chromosome encoded mHAgs are presented in Tables 1 and 2, respectively.
Table 1. mHAg autosomal encoded.
mHAg | Restriction | Identification | Clinical trials | Protein | Tissue distribution | |
HA-1 | HLA-A*02 | Den Haan 1998 | Goulmy 1996 Tseng 1999 Gallardo 2001 | HA-1 | Restricted | Hematopoietic cells Bronchial Carcinomas Cervix Carcinoma Breast Carcinoma Prostate Carcinoma |
HA-1/B60 | HLA-B*60 | Mommaas 2002 | - | HA-1 | Restricted | Hematopoietic cells |
HA-2 | HLA-A*02 | Den Haan 1995 | Goulmy 1996 | Myosin 1G | Restricted | Hematopoietic cells |
HA-3 | HLA-A*01 | Spierings 2003 | Goulmy 1996 | Lymphoid blast crisis oncogene | Broad | Hematopoietic cells Keratinocytes Fibroblasts PTECs HUVECs Melanocytes |
HA-8 | HLA-A*02 | Brickner 2001 | Akatsuka 2003 Perez-Garcia 2005 | KIAA0020 | Broad | Hematopoietic cells Fibroblasts |
HB-1H/Y | HLA-B*44 | Dolstra 1999 | - | unknown | Restricted | B cell ALL, EBV-BLCLs |
ACC-1 | HLA-A*24 | Akatsuka 2003 | Nishida 2004 | BCL2A1 | Restricted | Hematopoietic cells |
ACC-2 | HLA-B*44 | Akatsuka 2003 | - | BCL2A1 | Restricted | Hematopoietic cells |
SP110 (HwA-9) | HLA-A*03 | Warren 2006 | - | SP110 intranuclear protein | Restricted | Hematopietic cells IFN– gamma inducible |
PANE1 (HwA-10) | HLA-A*03 | Brickner 2006 | - | PANE1 | Restricted | Lymphoid cells |
UGT2B17/A29 | HLA-A*29 | Murata 2003 | - | UGT2B17 | Restricted | Dendritic cells, B- cells, EBV-BLCLs |
UGT2B17/B44 | HLA-B*44 | Terrakura 2007 | | UGT2B17 | Restricted | Dendritic cells, B- cells, EBV-BLCLs |
LRH-1 | HLA-B*07 | de Rijke 2005 | - | P2X5 | Restricted | T cells, B cells, NK cells, PHA blasts, EBV-BLCLs, AML |
LB-ECGF-1H | HLA-B*07 | Slager 2006 | - | ECGF-1 | Restricted | Hematopoietic cells |
CTSH/A31 | HLA-A*31 | Torikai 2006 | - | Cathepsin H | Restricted | EBV-BLCLs, AML |
CTSH/A33 | HLA-A*33 | Torikai 2006 | - | Cathepsin H | Restricted | EBV-BLCLs, AML |
LB-ADIR-1F | HLA-A*02 | van Bergen 2007 | - | TOR3A | Restricted | - |
ACC-6 | HLA-B*44 | Kawase 2007 | - | HMSD | Restricted | - |
Table 2. mHAg encoded by the Y chromosome.
mHAg | Restriction | Identification | Clinical trials | Protein | Tissue distribution | |
A1/HY | HLA-A*01 | Pierce 1999 | - | USP9Y | Broad | Hematopoietic cells, fibroblasts |
A2/HY | HLA-A*02 | Meadows 1997 | Goulmy 1996 | SMCY | Broad | Hematopoietic cells, fibroblasts |
A33/HY | HLA-A*33 | Torikai 2004 | - | TMSB4Y | Broad | Hematopoietic cells |
B7/HY | HLA-B*07 | Wang 1995 | - | SMCY | Broad | Hematopoietic cells |
B8/HY | HLA-B*08 | Warren 2000 | - | UTY | Restricted | Hematopoietic cells |
B52/HY | HLA-B*52 | Ivanov 2005 | - | RPS4Y1 | Restricted | Leukocytes, PHA blasts, EBV-BLCLs, B cells, Breast carcinoma, Hepatocellular carcinoma, Colon adenocarcinoma, AML, ALL Multiple myeloma |
B60/HY | HLA-B*60 | Vogt 2000 | - | UTY | Broad | Hematopoietic cells, fibroblasts |
DRB1*1501/HY | HLA-DRB1*15 | Zorn 2004 | - | DDX3Y (DBY) | Broad | Hematopoietic cells, fibroblasts |
DRB3*0301/HY | HLA-DRB3*0301 | Spierings 2003 | - | RPS4Y1 | Broad | Hematopoietic cells, fibroblasts |
DQ5/HY | HLA-DQB1*05 | Vogt 2002 | - | DDX3Y (DBY) | Broad | Hematopoietic cells, Fibroblasts |
Abbreviations: HUVE – human umbilical vein epithelium, PTE – proximal tubular epithelium, EBV-BLCL – Epstein Barr virus transformed B – lymphoblastoid cell lines, PHA – phytohaemagglutynin
Data in table 1 and 2 are based on materials presented during „Minor histocompatibility workshop” 2005, Leiden Univeristy Medical Center; Eric Spierings: Minor H antigens: targets for tumour therapy – lecture at the conference, „Immunogenetics in haematology and stem cell transplantation”, Wrocław 09.02.2006; and Spierings E., Goulmy E.: Expanding the immunotherapeutic potential of minor histocompatibility antigens. J Clin Invest 2005, 115, 3397-3400.
Powyżej zamieściliśmy fragment artykułu, do którego możesz uzyskać pełny dostęp.
Mam kod dostępu
- Aby uzyskać płatny dostęp do pełnej treści powyższego artykułu albo wszystkich artykułów (w zależności od wybranej opcji), należy wprowadzić kod.
- Wprowadzając kod, akceptują Państwo treść Regulaminu oraz potwierdzają zapoznanie się z nim.
- Aby kupić kod proszę skorzystać z jednej z poniższych opcji.
Opcja #1
29 zł
Wybieram
- dostęp do tego artykułu
- dostęp na 7 dni
uzyskany kod musi być wprowadzony na stronie artykułu, do którego został wykupiony
Opcja #2
69 zł
Wybieram
- dostęp do tego i pozostałych ponad 7000 artykułów
- dostęp na 30 dni
- najpopularniejsza opcja
Opcja #3
129 zł
Wybieram
- dostęp do tego i pozostałych ponad 7000 artykułów
- dostęp na 90 dni
- oszczędzasz 78 zł
Piśmiennictwo
1. Spierings E, Drabbels J, Hendriks M et al.: A uniform genomic minor histocompatibility antigen typing methodology and database designed to facilitate clinical applications. PlosOne 2006; 1 (1): 1-10.
2. Spierings E, Hendriks M, Absi L et al.: Phenotype frequencies of autosomal minor Histocompatibility antigens display significant differences among ethnic populations. Plos Genetics 2007; 3 (6): 1108-1119.
3. Pietz BC, Warden MB, Duchateau BK, Ellis TM: Multiplex genotyping of human minor histocompatibility antigens. Hum Immunol 2005; 66: 1174-1182.
4. Markiewicz M, Siekiera U, Karolczyk A et al.: Immunogenic disparities of 11 minor histocompatibility antigens (mHAs) in HLA-matched unrelated allogeneic hematopoietic SCT. Bone Marrow Transplant 2009; 43: 293-300.
5. Siekiera U, Janusz J: Human minor histocompatibility antigens (mHag) in HLA-ABC, DR, DQ matched sib-pairs. Transf Clin Biol 2001; 8 (suppl. 1): 163s-164s (abstr).
6. Gahrton G: Risk assessment in haematopoietic stem cell transplantation: impact of donor-recipient sex combination in allogeneic transplantation. Best Pract Res Clin Haematol 2007; 20 (2): 219-229.
7. Markiewicz M, Siekiera U, Dzierzak-Mietla M et al.: The impact of H-Y mismatches on results of HLA-matched unrelated allogeneic HSCT – Transpl Proceedings 2010; 42: 3297-3300.
8. Voogt PJ, Fibbe WE, Marijt WA et al.: Rejection of bone-marrow graft by recipient-derived cytotoxic T lymphocytes against minor histocompatibility antigens. Lancet 1990; 335 (8682): 131-134.
9. Marijt WA, Kernan NA, Diaz-Barrientos T et al.: Multiple minor histocompatibility antigen-specific cytotoxic T lymphocyte clones can be generated during graft rejection after HLA-identical bone marrow transplantation. Bone Marrow Transplant 1995; 16 (1): 125-132.
10. Falkenburg JHF, Goselink HM, van der Harst D et al.: Growth inhibition of clonogenic leukemic precursor cells by minor histocompatibility antigen-specific cytotoxic T-lymphocytes. J Exp Med 1991; 174 (1): 27-33.
11. Gratwohl A, Stern M, Brand R et al.: Impact of the donor recipient sex combination in hematopoietic stem cell transplantation: H-Y as a model for the interaction between major and minor histocompatibility antigens. Blood 2007; 110 (11) part 1: 481 (abstr.).