Ponad 7000 publikacji medycznych!
Statystyki za 2021 rok:
odsłony: 8 805 378
Artykuły w Czytelni Medycznej o SARS-CoV-2/Covid-19

Poniżej zamieściliśmy fragment artykułu. Informacja nt. dostępu do pełnej treści artykułu
© Borgis - Postępy Nauk Medycznych 6/2012, s. 476-483
*Joanna Chowańska1, 2, Tomasz Kotwicki1, 2, Krzysztof Rosadziński2
Porównanie pozycji stojącej i siedzącej przy ocenie deformacji skoliotycznej tułowia techniką topografii powierzchni ciała
Comparison of standing and sitting position used in surface topography trunk assessment**
1Rehasport Clinic, Poznań
Head of the Clinic: Witold Dudziński, MD, PhD
2Spine Disorders Unit, Department of Pediatric Orthopedics and Traumatology, University of Medical Sciences, Poznań
Head of the Department: Prof. Andrzej Szulc, MD, PhD
Streszczenie
Wstęp. U dzieci ze skoliozą okresowo wykonywane jest badanie rentgenowskie (RTG), standardowo stosuje się test Adamsa, połączony z pomiarem Kąta Rotacji Tułowia (KRT) skoliometrem Bunnella. Badanie topografii powierzchni ciała (TPC) umożliwia szybką i dokładną analizę postawy ciała w trzech płaszczyznach przestrzeni. Celem pracy było zbadanie użyteczności pozycji siedzącej z kifotyzacją tułowia w badaniu TPC.
Materiał i metody. Przebadano 113 dziewcząt ze skoliozą idiopatyczną w wieku od 10 do 18 lat, średnia 14,0 ± 2,1 lata. Wielkość skrzywienia wynosiła 41,2° ± 16,7° (od 10° do 95° kąta Cobba), test Rissera od 0 do 5, mediana 2.
Na podstawie badania RTG, skoliometrem oraz TPC w pozycji stojącej i siedzącej oceniano następujące parametry: długość kręgosłupa, POTSI, Hump Sum, liczba łuków skrzywienia.
Wyniki. W badaniu TPC wykazano znaczącą statystycznie różnicę wyników uzyskanych w pozycji stojącej w porównaniu z pozycją siedzącą w odniesieniu do parametrów: długość kręgosłupa, POTSI i Hump Sum. Korelacja sumy rotacji tułowia ocenianej skoliometrem- HumpSum(sk) oraz metodą TPC – HumpSum(tp) w pozycji stojącej była silna, a w pozycji siedzącej była bardzo wysoka. Różnica pomiędzy średnią wartością rotacji tułowia ocenianą skoliometrem i metodą TPC w pozycji siedzącej nie była istotna statystycznie. Największą liczbę łuków stwierdzono w badaniu TPC w pozycji siedzącej.
Wnioski. Badanie TPC może być z powodzeniem prowadzone w pozycji siedzącej. Pozycja ta: (1) jest łatwa do przyjęcia, (2) stabilna, (3) eliminuje problem asymetrycznego ustawienia miednicy, (4) wykazuje większą korelację z badaniem przy użyciu skoliometru niż pozycja stojąca, (5) kifotyzacja tułowia zwiększa czułość badania TPC na wartość rotacji oraz (6) umożliwia lepsze uwidocznienie łuków skrzywienia.
Summary
Introduction. Children with idiopathic scoliosis need x-ray rechecks. Adams test and Angle of Trunk Rotation (ATR) measurement with Bunnell scoliometer are standard methods of trunk assessment. Surface topography examination (ST) enables three-dimensional, fast and accurate trunk analysis. This study was conducted to evaluate a sitting position with trunk kyphotization in ST examination (ST-Sit) used for assessment of scoliotic patients’ trunk deformations.
Material and methods. 113 girls were examined, aged 10 to 18, mean 14.0 ± 2.1. Cobb angle mean value was 41.2° ± 16.7°, ranged from 10° to 95°. Based on x-ray imaging, ATR scoliometer measurement and ST examination, the following parameters were assessed: spinal length, POTSI, Hump Sum and number of spinal curvatures in frontal plane.
Results. ST revealed statistically significant difference between standing and sitting position regarding: spinal length, POTSI and Hump Sum. Strong correlation occurred between Hump Sum parameters measured with scoliometer and during standing position in ST (ST-Stand). Hump Sum results of scoliometer examinations and ST-Sit revealed very strong correlation. There was no statistically significant difference between rotational values measured with scoliometer and during ST-Sit. Higher number of spinal curvatures was detected in ST-Sit compared to X-ray examination and ST-Stand.
Conclusions. ST-Sit position (1) is easy to perform, (2) more stable than ST-Stand, (3) eliminates influence of pelvis asymmetry on trunk, (4) correlation between scoliometer measurement and ST-Sit was stronger than between scoliometer measurement and ST-Stand, (5) trunk kyphotization allows higher sensitivity of rotational deformity evaluation (6) and better visualization of spinal curvatures.



Introduction
Idiopathic scoliosis is a developmental deformity of spine and trunk of unknown etiology. Three-dimensional deformity of the spine consists of: lateral spine bend in frontal plane, disturbances in physiological spine curvatures in sagittal plane: thoracic kyphosis and lumbar lordosis as well as axial rotation of vertebrae in horizontal plane (1). Spinal distortion changes the alignment of ribs attached to the spine and causes deformation of the thorax (fig. 1). Asymmetric mechanical forces: pressure, gravitation, pulling caused by ligaments, tendons and muscles lead to bone remodeling and three-dimensional structural changes, which is described as a torsion (1, 2).
Fig. 1. Scoliotic patient’s thorax transverse section (scheme).
Children and adolescents need to be regularly followed up in order to detect scoliosis progression. Clinical examination and periodic x-rays are used in trunk deformation assessment. Adams test combined with Angle of Trunk Rotation measurement done with the use of Bunnell scoliometer are used conventionally. Forward bending of trunk reveals vertebrae rotation appearing as a rib hump at thoracic level and/or muscle prominence at lumbar level. Vertebrae spinal processes alignment is changed during the bend, which makes the curvatures more visible (fig. 2A).
Non-invasive optical techniques for trunk shape assessment, known as surface topography (ST), have aroused interest lately. Those methods are based on the relationship between the angle of spinal curvature and visible surface deformity (3-6). The use of computer technology in the surface topography examination enables fast and accurate three-dimensional trunk shape analysis as well as data storage and comparison (fig. 2B). Both clinical and ST trunk assessment are performed in standing position of the patient.
Fig. 2. Non-invasive methods of objective evaluation of trunk deformity in idiopathic scoliosis: A – ATR measurement with the use of Bunnell scoliometer (forward bending standing position), B – surface topography examination (relaxed standing position).
The aim of the study was to evaluate the usefulness of sitting position during ST examination used for assessment of deformity resulting from idiopathic scoliosis.
Material and methods
113 girls aged from 10 to 18 years, mean 14.0 ± 2.1 years old, were examined. The height of the girls was 160.0 ± 9.4 cm (from 121 to 184 cm), mean body weight was 48.6 ± 9.2 kg (from 22 to 75 kg). The mean value of the main spinal curve, measured with the use of Cobb method was 41.2° ± 16.7° (from 10° to 95°). Results of Risser test ranged from 0 to 5, median 2.
The number of spinal curvatures and their Cobb angles were determined, based on x-ray exams.
The magnitude of a rib hump and lumbar prominence was assessed with the use of Bunnell scoliometer. Based on scoliometer examination results, the value of Hump Sum(sk) parameter was calculated. It was done by adding the greatest values of ATR of the main and – if occurred – of compensatory curvatures, as shown in the algorithm (fig. 3) (7).
Fig. 3. Algorithm of Hump Sum parameter calculation based on ATR measured with the use of Bunnell scoliometer.
ST examination was performed in two positions of the patient: (1) relaxed standing and (2) sitting with trunk kyphotization, lower extremities with knee and hip joints bent at about 90°, shoulder girdle above a pelvis and arms embracing the knees (fig. 4).
Fig. 4. Surface topography in standing position: A – patient’s trunk with superimposed moire fringes, B – graph of trunk rotation in standing position. Surface topography examination in sitting position with trunk kyphotization: C – patient’s trunk with superimposed moire fringes, D – graph of trunk rotation in sitting position.
The following ST parameters were analyzed: number of spinal curvatures, length of the spine measured from the spinal process of the seventh cervical vertebra to the spinal process of the first sacral vertebra, Posterior Trunk Symmetry Index: POTSI (7, 8, 9), ST sum of rotation: Hump Sum(st) (7) (fig. 5).
Fig. 5. Hump Sum parameter calculation algorithm based on trunk rotation measured with the use of surface topography.
According to the scheme presented in table 1, examinations results were compared.
Table 1. Parameters compared in: x-rays, scoliometer exam and surface topography in standing and sitting position.
Lp.ExaminationCompared parameterMethod of analysis
1.ST standing/ST sittingSpine length from C7 to S1comparison of means
2.ST standing/ST sittingPOTSIcomparison of means
3.ST standing/ST sittingHump Sum(st)comparison of means
4.Scoliometer/ST standingHump Sum(sk)/Hump Sum(st)correlation
5.Scoliometer/ST sitting Hump Sum(sk)/Hump Sum(st)correlation
6.Scoliometer/ST sitting Mean value of trunk rotationstatistical significance
7.X-ray/ST standing/ST sittingNumber of curvaturesstatistical significance
ST – surface topography, C7 – spinal process of the seventh cervical vertebra, S1– spinal process of the first sacral bone vertebra, POTSI – Posterior Trunk Symmetry Index, Hump Sum(st) sum of trunk rotation in surface topography examination, Hump Sum(sk) – sum of trunk rotation in scoliometer examination.
Furthermore, ten children were examined in order to analyze five options of the sitting position in terms of: stability and usefulness for the ST examination purpose.
Results
The following parameters of ST examination in standing and sitting positions: length of the spine from C7 to S1, POTSI and Hump Sum(st) are shown in table 2.
Table 2. Parameters compared in TPC examination: spine length, POTSI and Hump Sum in standing and sitting position.
ParameterST – standing position
(mean ± SD)
ST – sitting position
(mean ± SD)
Statistical significance of the results difference
Spine lenght (cm)41,5 ± 3,546,5 ± 3,5p < 0,05
POTSI28,9 ± 17,523,3 ± 13,8p < 0,001
Hump Sum(tp) (°)19,0 ± 6,621,3 ± 7,7p < 0,01
ST – surface topography, SD – standard deviation, POTSI-Posterior Trunk Symmetry Index, Hump Sum(st) – sum of trunk rotation in surface topography examination, cm – centimeter, (°) – value in degrees.
Correlation of Hump Sum(sk) and Hump Sum(st) in standing position was strong (fig. 6).
Fig. 6. Correlation of trunk rotation values in scoliometer examination and in surface topography in standing position.
Correlation of Hump Sum(sk) and Hump Sum(st) in sitting position was very strong (fig. 7).
Fig. 7. Correlation of trunk rotation values in scoliometer examination and in surface topography in sitting position.
The difference between mean values of: scoliometer ATR and ST rotation measured in sitting position with trunk kyphotization, was not statistically significant, p > 0.05.

Powyżej zamieściliśmy fragment artykułu, do którego możesz uzyskać pełny dostęp.
Mam kod dostępu
  • Aby uzyskać płatny dostęp do pełnej treści powyższego artykułu albo wszystkich artykułów (w zależności od wybranej opcji), należy wprowadzić kod.
  • Wprowadzając kod, akceptują Państwo treść Regulaminu oraz potwierdzają zapoznanie się z nim.
  • Aby kupić kod proszę skorzystać z jednej z poniższych opcji.

Opcja #1

29

Wybieram
  • dostęp do tego artykułu
  • dostęp na 7 dni

uzyskany kod musi być wprowadzony na stronie artykułu, do którego został wykupiony

Opcja #2

69

Wybieram
  • dostęp do tego i pozostałych ponad 7000 artykułów
  • dostęp na 30 dni
  • najpopularniejsza opcja

Opcja #3

129

Wybieram
  • dostęp do tego i pozostałych ponad 7000 artykułów
  • dostęp na 90 dni
  • oszczędzasz 78 zł
Piśmiennictwo
1. Głowacki M, Kotwicki T, Pucher A: Skrzywienie kręgosłupa. [W:] Marciniak W, Szulc A, red. Wiktora Degi Ortopedia i Rehabilitacja. Warszawa, PZWL 2003; 68-111.
2. Tylman D: Patomechanika bocznych skrzywień kręgosłupa. Warszawa, PZWL 1972; 99-176.
3. Pazos V, Cheriet F, Song L et al.: Accuracy assessment of human trunk surface 3D reconstructions from an optical digitising system. Med Biol Eng Comput 2005; 43: 11-15.
4. Oxborrow N: Assessing the child with scoliosis: the role of surface topography. Arch Dis Child 2000; 83: 453-455.
5. Nowotny J, Zawieska D, Saulicz E: Fototopografia z wykorzystaniem rastra optycznego i komputera jako sposób oceny postawy ciała. Postępy Rehabilitacji 1992; 6(1): 15-23.
6. Minguez M, Buendia M, Cibrian R et al.: Quantifier variables of the back surface deformity obtained with a noninvastive structured light method: evaluation of their usefulness in idiopathic scoliosis diagnosis. Eur Spine J 2007; 16: 73-82.
7. Kotwicki T, Kinel E, Chowańska J, Bodnar-Nanuś A: POTSI, Hump Sum i Suma Rotacji – nowe parametry z zakresu topografii powierzchni ciała dla opisu zniekształcenia tułowia u chorych ze skoliozą. Fizjoterapia Polska 2008; 8(3): 231-240.
8. Suzuki N, Inami K, Ono T et al.: Analysis of posterior trunk symmetry index (POTSI) in scoliosis. Part 1. Research into Spinal Deformities 1999; 2, 59: 81-84.
9. Inami K, Suzuki N, Ono T et al.: Analysis of posterior trunk symmetry index (POTSI) in scoliosis. Part 2. Research into Spinal Deformities 1999; 2, 59: 85-88.
otrzymano: 2012-04-04
zaakceptowano do druku: 2012-05-10

Adres do korespondencji:
*Joanna Chowańska
National Scoliosis Foundation 5 Cabot Place
Stoughton, MA 02072, USA
tel.: +1 401 309-30-62
e-mail: Joanna.Chowanska@scoliosis.org

Postępy Nauk Medycznych 6/2012
Strona internetowa czasopisma Postępy Nauk Medycznych