Hyperuricemia may be the result of uric acid overproduction or diminished renal uric acid excretion (and as recently suggested apart from renal perhaps also non-renal urate excretion) (1).
Overproduction may be the result of genetic disease, e.g. HGPRT mutation (hypoxanthine-guanine phosphoribosyltransferase) or PRPPS mutations (phosphoribosyl-pyrophosphate synthase). Acquired conditions are myeloproliferative or lymphopoliferative disease and most frequently dietary causes interacting with genetic background.
Diminished renal excretion of urate may be caused by primary nephropathies causing renal failure or be caused by genetic variants of urate transporters; recent genome-wide association analyses (Köttgen, Nature Genetics, in press) had identified a number of loci coding for tubular reabsorption which are associated with elevated serum urate concentrations.
In the past lead intoxication was an important cause of elevated urate concentration, but this has virtually disappeared in Mid Europe.
Cases of familial hereditary disease causing hyperuricemia, e.g. familial juvenile hyperuricemic nephropathy type 1 (FJHN2), medullary cystic renal disease type 2 (MCKD2) or glomerulocystic renal disease are associated with progressive renal failure. There is currently uncertainty whether in these genetic diseases caused by urate transporter mutations Allopurinol causes less progression of renal function by reducing serum uric acid concentration (2, 3).
In the past, there had been discussions whether elevated serum uric acid concentration in chronic kidney disease (CKD) is pathogenetically irrelevant or whether it contributes to progressive reduction of renal function. The causal function of uric acid in mediating progression of CKD had been clearly documented in the remnant kidney model by Kang (4). One recently identified mechanism is uric acid induced epithelial to mesenchymal transition (Ryu, Am. J. Physiol. Renal, 2013 (e-pub).
Today, there is also increasing clinical evidence that uric acid concentrations (even within the range of normal concentrations) actively promote loss of renal function. Therefore current studies evaluate whether uric acid is a novel target for therapeutic intervention. On the one hand there is strong observational evidence that urate is a factor contributing to onset and progression of CKD: for instance in a recent 10.2 year follow-up study uric acid was a significant risk factor for CKD, at least in males, for individuals in the fourth quartile of serum uric acid concentration the risk of CKD was significantly (p < 0.0001) increased by a factor of 2.1 (5). Similarly a study in Taiwan (6) – confirmed in Thailand (Satirapoj, Nephrology, Carlton; in press) – showed that the risk of onset of chronic kidney disease is significantly increased by a factor of 1.03 (95% CI 1.1-1.6) per > 1 mg/dl higher serum uric acid concentration. In a health check-up study by Yamada (7) the onset of CKD was progressively higher from the first to the fourth quartile of serum urate concentration (1.00; 1.85; 2.57; 3.54) in males and in females as well. In cross-sectional studies, uric acid concentration is also correlated to the presence of CKD (8) and furthermore an increase of plasma uric acid concentration is correlated to the decrease of renal function, i.e. progression of CKD as shown in a prospective cohort study; in the 4th quartile, the adjusted odds ratio was higher by a factor of 2.86 and uric acid increase > 1 mg/dl was associated with a risk of CKD higher by 1.63 (CI 1.25-2.12) (9).
Apart from all-cause CKD, hyperuricemia has also been identified as a risk factor for progression of primary kidney diseases, e.g. IgA glomerulonephritis (10). The role of uric acid concentration in the progression of IgA-GN was underlined by a biopsy study: no deterioration of renal function was seen in the patients with a serum uric acid concentration < 7.5 mg/dl (11). In line with this observation indirect evidence suggests renal vasoconstriction triggered by uric acid in patients with IgA glomerulonephritis (12).
Furthermore a recent kidney biopsy study in 167 patients with CKD documented a significant correlation between tertiles of serum uric acid concentration and hyalinosis as well as wall thickening (13).
Similarly, serum uric acid concentration has been shown to predict the onset of diabetic nephropathy in individuals with type 1 diabetes (14) and was even a predictor of the onset type 2 diabetes in the off-spring cohort of the Framingham heart study (15). This has also been documented in a 15-year follow-up study (1986-2001) by Krishnan (16): individuals with a serum uric acid concentration > 7 mg/dl had a hazard ratio (HR) of 1.94 to develop diabetes, HR 1.46 to develop insulin resistance, and HR 2.15 to develop pre-diabetes. In a 5-year follow-up study on 449 type 2 – diabetic individuals with normal renal function and no proteinuria at baseline Zoppini (17) documented that hyperuricemia, defined as > 7 mg/dl in men and > 6.5 mg/dl in women, increased the odds ratio of developing kidney disease by a factor of 2.55 (CI 1.71-3.85; p < 0.001).
An adverse effect of serum uric acid on kidney damage has also been documented in recipients of kidney transplants (18) and in patients at risk of acute kidney injury: Lapsia (19) found that progressively higher serum uric acid concentrations were associated with a progressively higher incidence of AKI.
It deserves mentioning that recent evidence documents that elevated uric acid concentration increases the risk of acute kidney injury (19, 20).
1. Ichida K, Matsuo H, Takada T et al.: Decreased extra-renal urate excretion is a common cause of hyperuricemia. Nat Commun 2012; 3: 764.
2. Warren DJ, Simmonds HA, Gibson T et al.: Familial gout and renal failure. Arch Dis Child 1981; 56(9): 699-704.
3. Gibson T: Hyperuricemia, gout and the kidney. Curr Opin Rheumatol 2012; 24(2): 127-131.
4. Kang DH, Nakagawa T, Feng L et al.: A role for uric acid in the progression of renal disease. J Am Soc Nephrol 2002; 13(12): 2888-2897.
5. Mok Y, Lee SJ, Kim MS et al.: Serum uric acid and chronic kidney disease: the Severance cohort study. Nephrol Dial Transplant 2012; 27(5): 1831-1835.
6. Wang S, Shu Z, Tao Q et al.: Uric acid and incident chronic kidney disease in a large health check-up population in Taiwan. Nephrology (Carlton) 2011; 16(8): 767-776.
7. Yamada T, Fukatsu M, Suzuki S et al.: Elevated serum uric acid predicts chronic kidney disease. Am J Med Sci 2011; 342(6): 461-466.
8. Jolly SE, Mete M, Wang H et al.: Uric acid, hypertension, and chronic kidney disease among Alaska Eskimos: the Genetics of Coronary Artery Disease in Alaska Natives (GOCADAN) study. J Clin Hypertens (Greenwich) 2012; 14(2): 71-77.
9. Zhang L, Wang F, Wang X et al.: The association between plasma uric acid and renal function decline in a Chinese population-based cohort. Nephrol Dial Transplant 2012; 27(5): 1836-1839.
10. Shi Y, Chen W, Jalal D et al.: Clinical outcome of hyperuricemia in IgA nephropathy: a retrospective cohort study and randomized controlled trial. Kidney Blood Press Res 2012; 35(3): 153-160.
11. Ohno I: Relationship between hyperuricemia and chronic kidney disease. Nucleosides Nucleotides Nucleic Acids 2001; 30(12): 1039-1044.
12. Sulikowska B, Johnson RJ, Odrowąż-Sypniewska G, Manitius J: Uric acid, renal vasoconstriction and erythropoietin relationship in IgA nephropathy revealed by dopamine-induced glomerular filtration response. Kidney Blood Press Res 2012; 35(3): 161-166.
13. Kohagura K, Kochi M, Miyagi T et al.: An association between uric acid levels and renal arteriolopathy in chronic kidney disease: a biopsy-based study. Hypertens Res 2013; 36(1): 43-49.
14. Hovind P, Rossing P, Tarnow L et al.: Serum uric acid as a predictor for development of diabetic nephropathy in type 1 diabetes: an inception cohort study. Diabetes 2009; 58(7): 1668-1671.
15. Bhole V, Choi JW, Kim SW et al.: Serum uric acid levels and the risk of type 2 diabetes: a prospective study. Am J Med 2010; 123(10): 957-961.
16. Krishnan E, Pandya BJ, Chung L et al.: Hyperuricemia in young adults and risk of insulin resistance, prediabetes, and diabetes: a 15-year follow-up study. Am J Epidemiol 2012; 176(2): 108-116.
17. Zoppini G, Targher G, Chonchol M et al.: Serum uric acid levels and incident chronic kidney disease in patients with type 2 diabetes and preserved kidney function. Diabetes Care 2012; 35(1): 99-104.
18. Haririan A, Metireddy M, Cangro C et al.: Association of serum uric acid with graft survival after kidney transplantation: a time-varying analysis. Am J Transplant 2011; 11(9): 1943-1950.
19. Lapsia V, Johnson RJ, Dass B et al.: Elevated uric acid increases the risk for acute kidney injury. Am J Med 2012; 125(3): 302.e9-17.
20. Ejaz AA, Kambhampati G, Ejaz NI et al.: Post-operative serum uric acid and acute kidney injury. J Nephrol 2012; 25(4): 497-505.
21. Zhou Y, Fang L, Jiang L et al.: Uric acid induces renal inflammation via activating tubular NF-kappaB signaling pathway. PLoS One 2012; 7(6): e39738.
22. Barlow KA, Beilin LJ: Renal disease in primary gout. Q J Med 1968; 37(145): 79-96.
23. Krishnan E, Lingala B, Bhalla V: Low-level lead exposure and the prevalence of gout: an observational study. Ann Intern Med 2012; 157(4): 233-241.
24. Busse FP, Fiedler GM, Leichtle A et al.: Lead poisoning due to adulterated marijuana. N Engl J Med 2008; 358(15): 1641-1642.
25. Miao Y, Ottenbros SA, Laverman GD et al.: Effect of a reduction in uric acid on renal outcomes during losartan treatment: a post hoc analysis of the reduction of endpoints in non-insulin-dependent diabetes mellitus with the Angiotensin II Antagonist Losartan Trial. Hypertension 2011; 58(1): 2-7.
26. Wang H, Wei Y, Kong X, Xu D: Effects of Urate-Lowering Therapy in Hyperuricemia on Slowing the Progression of Renal Function: A Meta-Analysis. J Ren Nutr 2012; pii: S1051-2276(12)00172-0 (e-pub ahead of print).
27. Ito S, Naritomi H, Ogihara T et al.: Impact of serum uric acid on renal function and cardiovascular events in hypertensive patients treated with losartan. Hypertens Res 2012; 35(8): 867-873.
28. Goicoechea M, de Vinuesa SG, Verdalles U et al.: Effect of allopurinol in chronic kidney disease progression and cardiovascular risk. Clin J Am Soc Nephrol 201; 5(8): 1388-1393.
29. Jung JW, Song WJ, Kim YS et al.: HLA-B58 can help the clinical decision on starting allopurinol in patients with chronic renal insufficiency. Nephrol Dial Transplant 2011; 26(11): 3567-3572.
30. Naoyuki K, Shin F, Toshikazu H et al.: Placebo-controlled, double-blind study of the non-purine-selective xanthine oxidase inhibitor Febuxostat (TMX-67) in patients with hyperuricemia including those with gout in Japan: phase 3 clinical study. J Clin Rheumatol 2011; 17 (4 Suppl. 2): 19-26.
31. Becker MA, Schumacher HR Jr, Wortmann RL et al.: Febuxostat compared with allopurinol in patients with hyperuricemia and gout. N Engl J Med 2005; 353(23): 2450-2461.
32. Schumacher HR Jr, Becker MA, Wortmann RL et al.: Effects of febuxostat versus allopurinol and placebo in reducing serum urate in subjects with hyperuricemia and gout: a 28-week, phase III, randomized, double-blind, parallel-group trial. Arthritis Rheum 2008; 59(11): 1540-1548.
33. Tatsuo H, Iwao O: A repeated oral administration study of febuxostat (TMX-67), a non-purine-selective inhibitor of xanthine oxidase, in patients with impaired renal function in Japan: pharmacokinetic and pharmacodynamic study. J Clin Rheumatol 2011; 17 (4 Suppl. 2): 27-34.
34. Whelton A, Macdonald PA, Zhao L et al.: Renal function in gout: long-term treatment effects of febuxostat. J Clin Rheumatol 2011; 17(1): 7-13.
35. Schäffer P, Gombos E, Meichelbeck K et al.: Childhood course of renal insufficiency in a family with a uromodulin gene mutation. Pediatr Nephrol 2010; 25(7): 1355-1360.
36. Becker MA, Schumacher HR, Espinoza LR et al.: The urate-lowering efficacy and safety of febuxostat in the treatment of the hyperuricemia of gout: the CONFIRMS trial. Arthritis Res Ther 2010; 12(2): 63.
37. Johnson RJ, Kang DH, Feig D et al.: Is there a pathogenetic role for uric acid in hypertension and cardiovascular and renal disease? Hypertension 2003; 41(6): 1183-1190.
38. Kanbay M, Yilmaz MI, Sonmez A et al.: Serum uric acid independently predicts cardiovascular events in advanced nephropathy. Am J Nephrol 2012; 36(4): 324-331.
39. Loeffler LF, Navas-Acien A, Brady TM et al.: Uric acid level and elevated blood pressure in US adolescents: National Health and Nutrition Examination Survey, 1999-2006. Hypertension 2012; 59(4): 811-817.