© Borgis - Postępy Nauk Medycznych 9/2014, s. 611-616
*Lidia Ziółkowska, Monika Kowalczyk, Katarzyna Bieganowska, Wanda Kawalec
Aktualne metody terapeutyczne u dzieci z kardiomiopatią przerostową – doświadczenia własne
Current therapeutic options in children with hypertrophic cardiomyopathy – own experience**
Department of Pediatric Cardiology, The Children’s Memorial Health Institute, Warszawa
Head of Department: prof. Wanda Kawalec, MD, PhD
Streszczenie
Wstęp. Przebieg kliniczny kardiomiopatii przerostowej (HCM) u dzieci jest bardzo różnorodny. U niektórych dzieci, przerost mięśnia sercowego powoduje postępującą niewydolność serca i występowanie zagrażających życiu zaburzeń rytmu serca. HCM jest najczęstszą przyczyną nagłej śmierci sercowej.
Cel pracy. Celem pracy była retrospektywna analiza spektrum klinicznego, aktualnych metod terapeutycznych i stratyfikacji ryzyka nagłego zgonu sercowego u dzieci z HCM.
Materiał i metody. Analizą objęto 108 dzieci, w wieku średnio 9,7 ± 5,46 lat z HCM rozpoznaną w latach 1991-2013. Średni okres obserwacji wynosił 6,4 ± 4,83 lat. Analizowano dane demograficzne pacjentów, ich objawy kliniczne, metody leczenia, jak również wyniki badania echokardiograficznego, EKG, 24-godzinnego EKG metodą Holtera oraz testu wysiłkowego.
Wyniki. Spośród 108 analizowanych pacjentów u 77 (71%) stosowano tylko leczenie farmakologiczne, u 4 (3,7) dzieci wykonano ablację RF, u 8 (7,4%) pacjentów wykonano operacyjne wycięcie mięśnia przegrody międzykomorowej. U 17 (15,7%) dzieci z czynnikami ryzyka nagłej śmierci sercowej kardiowerter-defibrylator został wszczepiony w prewencji pierwotnej u 12 dzieci i w prewencji wtórnej u 5. Do przeszczepu serca zakwalifikowano 6 (5,5%) chorych, u których występowały objawy postępującej niewydolności serca. Spośród 108 pacjentów 11 (10,6%) dzieci zmarło. Średnia roczna śmiertelność wynosiła 1,34.
Wnioski. U większości dzieci z HCM modyfikacja stylu życia i odpowiednia terapia farmakologiczna są wystarczające, dodatkowe interwencje medyczne nie są konieczne. U pacjentów z objawowym zawężaniem drogi odpływu lewej komory, opornym na leczenie farmakologiczne, należy rozważyć leczenie chirurgiczne. Pacjenci wysokiego ryzyka, powinni być prospektywnie identyfikowani i wszczepienie ICD powinno być brane pod uwagę, jednak konieczne są dalsze badania w celu ustalenia lepszych kryteriów kwalifikacji do prewencji pierwotnej u dzieci z kardiomiopatią przerostową.
Summary
Introduction. The clinical course of hypertrophic cardiomyopathy (HCM) in children is very heterogeneous. In some children, the thickened heart muscle causes progressive heart failure and life-threatening arrhythmias. HCM is the most common cause of sudden cardiac death.
Aim. The aim of study was retrospective analysis of clinical profile, current therapeutic options and sudden cardiac death risk assessment in children with HCM.
Material and methods. We analyzed 108 children, mean age 9.7 ± 5.46 yrs with HCM diagnosed in the years 1991-2013. Mean follow-up was 6.4 ± 4.83 yrs. Patients demographics, clinical symptoms, treatment strategy as well as the results of echocardiography, ECG, 24 h Holter ECG, exercise test were analyzed.
Results. Of the 108 patients studied 77 (71%) were treated only pharmacologically, in 4 (3.7) children RF catheter ablation was done, in 8 (7.4%) patients septal myectomy was performed. In 17 (15.7%) children with risk factors for sudden cardiac death ICD for primary (12/17) and secondary prevention (5/17) was implanted. The heart transplant was qualified in 6 (5.5%) patients who had symptoms of progressive heart failure. Among 108 patients 11 (10.6%) children died. The mean annual mortality rate was 1.34.
Conclusions. In most children with HCM lifestyle modification and appropriate pharmacological therapy are sufficient, additional medical interventions are not necessary. In patients with symptomatic left ventricular outflow tract obstruction refractory to medical therapy a surgical myectomy should be considered. High-risk patients ought to be prospectively identified and ICD implantation should be considered, however further research is required to establish better criteria for primary prevention in children.
Introduction
Hypertrophic cardiomyopathy (HCM) is a relatively common genetic cardiac disease (0.47 cases per 100.000 children per year) that is heterogeneous with respect to disease-causing mutations, clinical presentation, prognosis, and treatment strategies. HCM is a myocardial disease characterized by hypertrophy of the left ventricle which is not secondary to congenital heart disease or arterial hypertension. The severity of cardiac hypertrophy, etiology, as well as the clinical course of HCM in children is varied, resulting in a large spectrum of clinical and phenotypic expression (1, 2). Left ventricular hypertrophy is usually asymmetrical. Most are occupied septum and anterolateral free wall of the left ventricle, concentric hypertrophy occurs frequently and occasionally apex hypertrophy (3). Hypertrophic obstructive cardiomyopathy was diagnosed in 25% of patients with HCM, they have an obstruction and systolic pressure gradient in the left ventricular outflow tract (LVOT). In a subgroup of children with HCM, the thickened heart muscle can cause signs and symptoms, such as shortness of breath, fatigue, syncope, chest pain, progressive heart failure and problems in the heart’s electrical system resulting in life-threatening arrhythmias (3, 4). Hypertrophic cardiomyopathy is the most common cause of sudden cardiac death (SCD) in the young (including competitive athletes) (5-7). A subgroup of patients with hypertrophic obstructive cardiomyopathy (HOCM) remain severely symptomatic despite optimal medical therapy. Septal myectomy reduces or eliminates left ventricular outflow obstruction and produces marked symptomatic improvement (8, 9).
Treatment strategies include drug treatment for exertional dyspnea (β-blockers, verapamil), pharmacological treatment and radiofrequency catheter (RF) ablation for arrhythmias and the septal myectomy operation, which is the standard of care for severe refractory symptoms associated with marked outflow obstruction. The alcohol septal ablation and pacing are alternatives to surgery for selected adult patients. High-risk patients may be effectively protected against sudden cardiac death with the implantable cardioverter-defibrillator (ICD). In children with progressive heart failure pharmacological treatment of heart failure is used, and in the absence of improvement they are qualified for a heart transplant.
Aim
Retrospective analysis of clinical profile, current therapeutic options and SCD risk assessment in children with HCM hospitalized in the Department of Pediatric Cardiology in the years 1991-2013. Mean follow-up was 6.4 ± 4.83 yrs (ranged from 5 months to 20 yrs).
Material and methods
We analyzed 108 patients, 44 girls, 64 boys, mean age 9.7 ± 5.46 years (ranged from 4 month to 17.7 yrs) with hypertrophic cardiomyopathy. Patients demographics, clinical symptoms (shortness of breath, fatigability, syncope, pre-syncope, chest pain, heart failure, arrhythmias), family history of HCM and SCD, treatment strategy as well as the results of echocardiography, chest X-ray, 12-leads ECG, 24h Holter ECG, exercise test with assessment of blood pressure response to exercise were analyzed. HCM was diagnosed in the presence of left ventricular hypertrophy (more than two SDs from the normal range corrected for body size (BSA); z-score ≥ 2) in the absence of haemodynamic conditions that could account for the observed degree of hypertrophy. Left ventricular hypertrophy as % of mean normal range relative to BSA and z-score were calculated. Family history of SCD was defined as one or more SCD in relatives < 40 years of age or SCD in a relative with confirmed HCM at any age. Unexplained syncope was defined as unexplained transient loss of consciousness at or prior to first evaluation. Vasovagal syncope was not considered a risk factor for SCD. Abnormal systolic blood pressure response to exercise (ABPRE): < 25 mmHg rise in systolic blood pressure from rest to peak exercise and/or > 10 mmHg drop from maximal systolic blood pressure when exercised to exhaustion. Nonsustained ventricular tachycardia (NSVT) was defined as ≥ 3 consecutive ventricular extra systoles at a rate of ≥ 120 beats/min lasting < 30 s during Holter monitoring. In all patients, cardiological test results and data from the family history have been analyzed regarding the presence of major risk factors for SCD according to the Expert Group of the American and the European Society of Cardiology (10-12) recommendations such as sudden cardiac arrest (SCA) in an interview, sudden cardiac death in the family history, syncope of unknown etiology, left ventricular thickness ≥ 30 mm, spontaneous sustained ventricular tachycardia, abnormal blood pressure response during exercise and episodes of NSVT in 24-hour Holter ECG recording.
Results
Of the 108 patients studied 77 (71%) were treated only pharmacologically, with 4 children underwent RF catheter ablation (3.7%), in 8 (7.4%) patients septal myectomy was performed. In 17 (15.7%) children with risk factors for sudden cardiac death ICD for primary prevention (12/17) and secondary prevention (5/17) was implanted. The heart transplant was qualified in six patients (5.5%) who had symptoms of progressive heart failure, not responsive to drug treatment efficacy. Table 1 lists the baseline characteristics of the 108 patients studied.
Table 1. Baseline variables of 108 patients studied.
Clinical parameters | Study group |
Cohort mean age yrs ± SD, range | 9.7 ± 5.46, (0.04-17.7) |
Male, n (%) | 65 (60%) |
Age at diagnosis mean yrs ± SD, range | 6 ± 5.17 (0.01-17.1) |
Diagnosis of HCM in infancy, n (%) | 6 (5%) |
Family history of HCM, n (%) | 48 (44%) |
Family history of SCD, n (%) | 25 (23%) |
Resuscitated sudden cardiac arrest, n (%) | 5 (4.6%) |
Syncope, n (%) | 15 (14%) |
Pre-syncope, n (%) | 23 (21%) |
Chest pain, n (%) | 30 (28%) |
Heart palpitations, n (%) | 18 (17%) |
Dyspnoea on exertion, n (%) | 22 (20%) |
Maximum ventricular wall thickness,
mm, mean
% of mean normal range relative to BSA z-score | 5.7-44 (15) 131-657 (242) 2.04-10.4 (3.7) |
Asymmetric septal hypertrophy, n (%) | 74 (68) |
Concentric left ventricular hypertrophy, n (%) | 31 (29%) |
Apical left ventricular hypertrophy, n (%) | 3 (3%) |
LVOT gradient > 30 mmHg, n (%) | 24 (22%) |
NSVT, n (%) | 15 (14%) |
Beta-blockers, n (%) | 68 (88%) |
Calcium-blockers, n (%) | 8 (10%) |
Antiarrhythmics (sotalol or amiodarone), n (%) | 9 (8%) |
ACE-inhibitors, n (%) | 9 (8%) |
Diuretics (furosemide or spironolactone), n (%) | 25 (23%) |
Myectomy, n (%) | 8 (7.4%) |
RF ablation, n (%) | 4 (3.7%) |
ICD implantation, n (%) | 17 (15.7%) |
Primary prevention, n (%) | 12 (11%) |
Secondary prevention, n (%) | 5 (4.6%) |
Radiofrequency catheter ablation of the accessory pathway
In 7 patients with electrocardiographic features of pre-excitation (Wolff-Parkinson-White syndrome)electrophysiological study was done, in 4 (3.7%) children accessory atrioventricular pathway was diagnosed and RF ablation was performed. The mean age at the ablation was 12.1 ± 5 yrs (ranged from 6.7 to 17 yrs). Maximum left ventricular wall thickness ranged from 6.6 to 18.9 mm, an average of 14 mm (from 157 to 378% of mean normal range relative to BSA, medium 240%, z-score ranged from 2.3 to 9.7, average 5.8). Of the 4 patients with accessory pathways, in 2 children episodes of supraventricular tachycardia and reentry atrioventricular tachycardia were present. RF ablation was effective in 2 patients with an accessory atriventricular pathways located in left upper wall, after procedure no evidence of pre-excitation was found. One patient underwent RF ablation of two accessory atrioventricular pathways located in the septal posterior wall and right lateral wall. It was a good early effect of ablation-no conduction by bundle of Kent, but perhaps there is a His-Purkinje conduction (a real Mahaim fiber)because after ablation in electrocardiography features of pre-excitation persisted. It was concluded that the early result of RF ablation is good, remote requires further observation. In one patient RF ablation of two accessory atrioventricular pathways located in the left bottom and lateral wall was performed. After intervention, no signs of preexitation in electrocardiography was observed. During ventricular pacing narrow complexes – the earliest retrograde activation of the His bundle around the left side occured. Due to the location (indicated transseptal access), duration of application abandoned to continue the procedure. This patient received amiodarone and is expected to repeat RF ablation. All of these four patients after RF ablation receive beta-blockers.
Septal myectomy
Powyżej zamieściliśmy fragment artykułu, do którego możesz uzyskać pełny dostęp.
Mam kod dostępu
- Aby uzyskać płatny dostęp do pełnej treści powyższego artykułu albo wszystkich artykułów (w zależności od wybranej opcji), należy wprowadzić kod.
- Wprowadzając kod, akceptują Państwo treść Regulaminu oraz potwierdzają zapoznanie się z nim.
- Aby kupić kod proszę skorzystać z jednej z poniższych opcji.
Opcja #1
29 zł
Wybieram
- dostęp do tego artykułu
- dostęp na 7 dni
uzyskany kod musi być wprowadzony na stronie artykułu, do którego został wykupiony
Opcja #2
69 zł
Wybieram
- dostęp do tego i pozostałych ponad 7000 artykułów
- dostęp na 30 dni
- najpopularniejsza opcja
Opcja #3
129 zł
Wybieram
- dostęp do tego i pozostałych ponad 7000 artykułów
- dostęp na 90 dni
- oszczędzasz 78 zł
Piśmiennictwo
1. Maron BJ: Hypertrophic cardiomyopathy in childhood. Paediatr Clin North Am 2004; 51(5): 1305-1346.
2. Nugent A, Daubeney P, Chondros P et al.: Clinical features and outcomes of childhood hypertrophic cardiomyopathy: results from a national population-based study. Circulation 2005; 112: 1332-1338.
3. Yetman AT, Hamilton RM, Benson LE et al.: Long-term outcome and prognostic determinants in children with hypertrphiccardiomiopathy. JACC 1998; 32(7): 1943-1950.
4. McKenna WJ, Franklin RCG Nihoyannopoulos P et al.: Arrhythmia and prognosis in infants, children and adolescens with hypertrophic cardiomyopathy. J Am CollCardiol 1988; 11: 47-53.
5. Elliott PM, Poloniecki J, Dickie S: Sudden Heath in Hypertrophic Cardiomyopathy: Identification of High Risk Patients. J Am Coll Cardiol 2000; 36: 2212-2218.
6. Maron BJ, Shirani J, Poliac LC et al.: Sudden death in young competitive athletes: clinical, demographic and patological profiles. JAMA 1996; 276: 199-204.
7. Horowitz ES, Petkowicz R, Meyer F: Left ventricular structure and function in adolescent swimmers. Cardiol Young 2003; 13: supl. 1: 33.
8. Minakata K, Dearani JA, O’Leary PW et al.: Septal Myectomy for Obstructive Hypertrophic Cardiomyopathy in Pediatric Patients: Early and Late Results. Ann Thorac Surg 2005; 80: 1424-1430.
9. Lacovoni A, Spirito P, Simon C et al.: A contemporary European experience with surgical septal myectomy in hypertrophic cardiomyopathy. Eur Heart J 2012; 33: 2080-2087.
10. Maron BJ, McKenna WJ, Danielson GK et al.: American College of Cardiology/European Society of Cardiology Clinical Expert Consensus Document on Hypertrophic Cardiomyopathy: a report of the American College of Cardiology Foundation Task Force on Clinical Expert Consensus Documents and the European Society of Cardiology Committee for Practice Guidelines. Eur Heart J 2003; 24: 1965-1991.
11. Zipes DP, Camm AJ, Borggrefe M et al.: ACC/AHA/ESC 2006 guidelines for management of patients with ventricular arrhythmias and the prevention of sudden cardiac death. Europace 2006; 8: 746-837.
12. Gersh BJ, Maron BJ, Bonow RO et al.: 2011 ACCF/AHA Guideline for the Diagnosis and Treatment of Hypertrophic Cardiomyopathy: executive summary: a Report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. Circulation 2011; 124: 2761-2796.
13. Fananapazir L, Tracy CM, Leon MB et al.: Electrophysiologic Abnormalities in Patients With Hypertrophic Cardiomyopathy A Consecutive Analysis in 155 Patients. Circulation 1989; 80: 1259-1268.
14. Gangi RP, Alla V, Hunter C: Journal of General Internal Medicine. Conference: 34th Annual Meeting of the Society of General Internal Medicine Phoenix, AZ United States. Conference Publication: (var. pagings) 2011; 26 (pp S486).
15. MaronB: Hypertrophic cardiomyopathy: a systematic review. JAMA 2002; 287: 1308-1320.
16. Klues HG, Maron BJ, Dollar AL et al.: Diversity of structural mitral valve alterations in hypertrophic cardiomyopathy. Circulation 1992; 85: 1651-1660.
17. Altarabsheh SE, Dearani JA, Burkhart HM et al.: Outcome of septal myectomy for obstructive hypertrophic cardiomyopathy in children and young adults Ann Thorac Surg 2013; 95(2): 663-639; discussion 669.
18. Williams WG, Rebeyka IM: Surgical intervention and support for cardiomyopathies of childhood. Prog Pediatr Cardiol1992; 1: 61-71.
19. Said SM, Dearani JA, Ommen SR, Schaff HV: Surgical treatment of hypertrophic cardiomyopathy. Expert Rev Cardiovasc Ther 2013; 11(5): 617-627.
20. Sreeram N, Emmel M, de Giovani JV: Percutaneous radiofrequency septal reduction for hypertrophic obstructive cardiomyopatjy in children. JACC 2011; 58(24): 2501-2510.
21. Östman-Smith I, Wettrell G, Keeton B et al.: Age-and gender-specific mortality rates in childhood hypertrophic cardiomyopathy. Eur Heart J 2008; 29: 1160-1167.
22. Decker J, Rossano J, O?Brian Smith E et al.: Risk factors and mode of death in isolated hypertrophic cardiomyopathy in children. J Am Coll Cardiol 2009; 54: 250-254.
23. Maron BJ, Spirito P, Shen WK et al.: Implantable cardioverter-defibrillators and prevention of sudden cardiac death in hypertrophic cardiomyopathy. JAMA 2007; 298(4): 405-412
24. O’Mahony C, Esteban MTT, Lambiase PD et al.: A validation study of the 2003 American College of Cardiology/European Society of Cardiology and 2011 American College of Cardiology Foundation/American Heart Association risk stratification and treatment algorithms for sudden cardiac death in patients with hypertrophic cardiomyopathy. Heart 2013; 99:534-541.
25. Maron MS, Kalsmith BM, Udelson JE et al.: Survival after cardiac transplantation in patients with hypertrophic cardiomyopathy. Circ Heart Fail 2010; 3: 574-579.