© Borgis - Postępy Nauk Medycznych 10/2014, s. 672-677
*Małgorzata Rumińska1, Anna Majcher1, Beata Pyrżak1, Aneta Czerwonogrodzka-Senczyna2, Ewelina Witkowska-Sędek1, Danuta Janczarska1
Ocena zależności między stężeniem adiponektyny i składowymi zespołu metabolicznego u dzieci i młodzieży z otyłością prostą
Relationship between adiponectin levels and metabolic syndrome components in obese children and adolescents
1Department of Pediatrics and Endocrinology, Medical University of Warsaw
Head of Department: Beata Pyrżak, MD, PhD
2Department of Human Nutrition, Medical University of Warsaw
Head of Department: Dorota Szostak-Węgierek, MD, PhD
Streszczenie
Wstęp. Adiponektyna jest białkiem tkanki tłuszczowej pełniącym wiele funkcji i odgrywającym istotną rolę w patogenezie zespołu metabolicznego u dzieci.
Cel pracy. Ocena zależności między stężeniem adiponektyny i zespołem metabolicznym oraz jego składowymi u dzieci i młodzieży z otyłością prostą.
Materiał i metody. Badaniami objęto 122 otyłych pacjentów (52 dziewczynki, 70 chłopców) w wieku 5,3-17,9 roku i 58 pacjentów grupy kontrolnej. Otyłość oceniano według kryteriów IOTF. U każdego pacjenta wykonano pomiary antropometryczne oraz badania laboratoryjne. Stężenie adiponektyny oznaczano metodą radioimmunologiczną (RIA). Wyliczono wskaźnik HOMA do oceny insulinooporności. Zespół metaboliczny definiowano na postawie kryteriów IDF (2007).
Wyniki. Zespół metaboliczny (MetS) stwierdzono u 20,2% otyłych dzieci. Średnie stężenie adiponektyny było statystycznie znamiennie niższe w grupie dzieci otyłych w porównaniu do dzieci z grupy kontrolnej. Niższe stężenie adiponektyny miały dzieci otyłe z zespołem metabolicznym w porównaniu do otyłych niespełniających kryteriów MetS. U dzieci z grup badanej i kontrolnej rozpatrywanych łącznie adiponektyna korelowała z BMI, BMI SDS, HDL-C i CRP. Związek adiponektyny z HDL-C stwierdzono również w grupie dzieci otyłych. W analizie regresji logistycznej wykazano, że wzrost adiponektyny o jedną jednostkę zmniejsza o 0,9 raza ryzyko wystąpienia obniżonego < 40 mg/dl stężenia HDL-C.
Wnioski. Adiponektyna może być związana z zespołem metabolicznym poprzez jej wpływ na HDL-C i proces zapalny.
Summary
Introduction. Adiponectin is an adipocyte-derived multiple function protein involved in metabolic syndrome pathogenesis of children.
Aim. The aim of the study was to assess the correlation between adiponectin levels and the metabolic syndrome and its components in obese children and adolescents.
Material and methods. The study included 122 obese children (52 girls, 70 boys, aged 5.3-17.9 years) and a control group of 58 normal-weight children. Obesity was defined according to IOTF criteria. Anthropometric measurements and blood samples were taken from each participant. Adiponectin levels were assessed using the radioimmunoassay (RIA) method. HOMA was calculated to estimate the degree of insulin resistance. Metabolic syndrome components were applied using the 2007 IDF criteria.
Results. The metabolic syndrome (MetS) was diagnosed in 20.2% of the study group. The plasma adiponectin levels were significantly lower in obese children than in the control group. Lower mean adiponectin levels were found in obese children with MetS criteria as compared to those without. In study and control groups of children considered as a whole the adiponectin levels were correlated with BMI, BMI SDS, HDL-C and CRP. The correlation with HDL-C was observed in the obese group only. Logistic regression analysis demonstrated that a 1 unit increase in adiponectin level results in a 0.9 fold reduction of the risk of a low < 40 mg/dl HDL-C level.
Conclusions. Adiponectin may be associated with the metabolic syndrome through its impact on HDL-C and inflammation.
Introduction
The observed epidemic of childhood and adolescent obesity has serious health consequences. Numerous concomitant metabolic and hemodynamic disturbances as well as chronic inflammation process result in diabetes type 2, arterial hypertension, atherogenic dyslipidemia, which are components of the metabolic syndrome (MetS). These ailments may accompany obesity in middle age and lead to cardiovascular disease (1, 2). Adipocytokines, biologically active substances produced by the adipose tissue play the key role in the induction of the above-mentioned changes.
Adiponectin is one of the adipocytokines and the only one the concentration of which decreases with the increase of the adipose tissue. It is the most abundantly expressed adipokine in adipose tissue which exerts pleiotropic insulin-sensitizing effects. Through activation of the adenosine monophosphate-induced protein kinase (AMPK) pathway and peroxisome proliferator activated receptor α (PPARγ) adiponectin regulates carbohydrate and fat metabolism. Adiponectin inhibits hepatic gluconeogenesis, increases glucose uptake and fatty acid oxidation in skeletal muscle (3, 4). The insulin-sensitizing effects of adiponectin participate in activating insulin-receptor substrate 1 – associated phosphatidylinositol 3-kinase (PI-3K) which improves intracellular insulin action pathway, enhancing fatty acid transport protein 1 mRNA expression and decreases TNF α production (5). Adiponectin has an anti-inflammatory effect on the vascular wall and reduces arteriosclerosis. It inhibits endothelial nuclear factor kβ signaling, reduces adhesion molecule expression and smooth muscle cell proliferation, suppresses macrophage transformation in foam cells as well as stimulates nitric oxide production. Dysregulation of adiponectin expression and secretion may affect pathogenesis of metabolic disease in children and adolescents. Lower levels of adiponectin are observed in obese children with insulin resistance and metabolic syndrome. Hipoadiponectinemia is predictive of development of type 2 diabetes and coronary artery disease (CAD) (3-5).
Aim
The aim of the study was to evaluate the correlation between adiponectin levels and metabolic syndrome and its components in obese children and adolescents.
Material and methods
The study included 122 children with simple obesity (52 girls, 70 boys), aged 5.3-17.9 years (mean age 11.6 ± 3 years). The control group consisted of 58 children of the same age (mean age 11.7 ± 3 years) with normal somatic parameters.
Anthropometric measurements of all the children were taken, including body height (cm), body weight (kg), waist circumference and hip circumference (cm), thickness of 3 skinfolds (mm) and body composition using the bioelectrical impedance analysis (BIA) method. The results of these measurements were used to calculate BMI (Body Mass Index), waist to hip ratio (WHR), waist to height ratio (WHtR) and body fat percentage using the Slaughter equations based on skinfold measurements and the BIA method (7).
Obesity was assessed using the criteria developed by International Obesity Task Force (IOTF) (8). The threshold of obesity was set at BMI SDS ≥ +2, expressed in values normalized for each patient using LMS method (9). WHtR exceeding 0.5 was assumed to be a value indicating abdominal obesity. The norms for body fat percentage were set at 19% for girls and 15% for boys.
After a 12-hour fast the following parameters were measured: fasting adiponectin concentration using the radioimmunoassay (RIA) method, glucose and insulin concentrations (fasting and at 30, 60, 90 and 120 minutes of the oral glucose tolerance test – OGTT; glucose levels were measured using the enzymatic method, whereas insulin concentrations were measured using the chemiluminescence and immunoenzymatic methods), total cholesterol (TG), high-density lipoprotein cholesterol (HDL-C), triglyceride (TG) and the acute-phase protein CRP using the standard enzymatic method. Light-density lipoprotein cholesterol (LDL-C) was calculated using the Friedewald formula (10). The resulting data was used to calculate indicators of insulin resistance HOMA. The resulting values of lipid metabolism were interpreted according to the 2007 American Heart Association (AHA) recommendations, and glucose levels were interpreted in accordance with the 2013 Polish Diabetes Association guidelines (10, 11). Hyperinsulinism was defined as fasting insulin level ≥ 15 μIU/ml, and/or maximum OGTT level ≥ 150 μIU/ml, and/or insulin level at 120 minutes of OGTT ≥ 75 μIU/ml Homoeostasis Model Assessment (HOMA) ≥ 3 testify to severe insulin resistance (12).
Each child’s blood pressure was measured, and the results were evaluated using percentile charts for the population of children published by Nawarycz and Ostrowska-Nawarycz (13). Hypertension was diagnosed when the values of systolic or diastolic blood pressure were above the 95th percentile; mean blood pressure values between the 90th and 95th percentiles were defined as the border zone (13).
According to the 2007 International Diabetes Federation (IDF) consensus definition the metabolic syndrome criteria was applied (14).
The project received approval of the Ethical Committee at Medical University of Warsaw. The data were analyzed using the statistic package, SPSS. Statistical significance was considered to be p = value < 0.05.
Results
The mean BMI of the obese children was 29.5 ± 4.9 kg/m2, the mean BMI SDS was +2.8 ± 0.5. All the children were found to have high body fat percentage, averaging 38.1 ± 8.2%. The mean waist circumference was 90.3 ± 12.3 cm. In nearly all the children their WHtR met the criteria for diagnosing abdominal obesity. For most anthropometric parameters there were statistically significant differences between the control group and the study group (tab. 1).
Table 1. Comparison of mean values and standard deviation of chosen anthropometric and biochemical parameters between the control group and the study group.
Variable | Control group | Study group | p-value |
Height (cm) | 158.2 ± 14.0 | 154.1 ± 16.2 | 0.148 |
Body weight (kg) | 46.7 ± 12.9 | 72.2 ± 24.1 | 0.000 |
Body Mass Index (kg/m2) | 18.7 ± 2.7 | 29.5 ± 4.9 | 0.000 |
SDS BMI | 0.0 ± 0.9 | 2.8 ± 0.5 | 0.000 |
Waist circumference (cm) | 64.3 ± 6.6 | 90.3 ± 12.3 | 0.000 |
Hip circumference (cm) | 82.4 ± 9.9 | 101.4 ± 14.0 | 0.000 |
WHR | 0.78 ± 0.04 | 0.89 ± 0.05 | 0.000 |
WHtR | 0.4 ± 0.02 | 0.58 ± 0.47 | 0.000 |
% FAT (skinfold) | 19.5 ± 6.3 | 34.2 ± 5.0 | 0.000 |
Fasting glucose (mg/dl) | 82.5 ± 10.4 | 83.6 ± 10.3 | 0.549 |
TC (mg/dl) | 157.5 ± 22.4 | 176.9 ± 30 | 0.000 |
HDL-C (mg/dl) | 56 ± 11.9 | 44.4 ± 11.2 | 0.000 |
LDL-C (mg/dl) | 85.1 ± 24.2 | 105.8 ± 27.2 | 0.000 |
TG (mg/dl) | 76.9 ± 33.6 | 133.2 ± 62.9 | 0.000 |
CRP (mg/dl) | 0.49 ± 0.2 | 0.45 ± 0.3 | 0.446 |
Adiponectin (μg/ml) | 15.9 ± 6.6 | 13.1 ± 5.9 | 0.004 |
WHR – waist to hip ratio, WHtR – waist to height ratio, % FAT – % of body mass, TC – total cholesterol, TG – triglycerides, CRP – C-reactive protein
Powyżej zamieściliśmy fragment artykułu, do którego możesz uzyskać pełny dostęp.
Mam kod dostępu
- Aby uzyskać płatny dostęp do pełnej treści powyższego artykułu albo wszystkich artykułów (w zależności od wybranej opcji), należy wprowadzić kod.
- Wprowadzając kod, akceptują Państwo treść Regulaminu oraz potwierdzają zapoznanie się z nim.
- Aby kupić kod proszę skorzystać z jednej z poniższych opcji.
Opcja #1
29 zł
Wybieram
- dostęp do tego artykułu
- dostęp na 7 dni
uzyskany kod musi być wprowadzony na stronie artykułu, do którego został wykupiony
Opcja #2
69 zł
Wybieram
- dostęp do tego i pozostałych ponad 7000 artykułów
- dostęp na 30 dni
- najpopularniejsza opcja
Opcja #3
129 zł
Wybieram
- dostęp do tego i pozostałych ponad 7000 artykułów
- dostęp na 90 dni
- oszczędzasz 78 zł
Piśmiennictwo
1. Freedman DS, Dietz WH, Srinivasan SR et al.: The relation of overweight to cardiovascular risk factors among children and adolescents: The Bogalusa Heart Study. Pediatrics 1999; 103(6): 1175-1182.
2. Freedman DS, Mei Z, Srinivasan SR et al.: Cardiovascular risk factors and excess adiposity among overweight children and adolescents: The Bogalusa Heart Study. J Pediatr 2007; 150: 12-17.
3. Kadowaki T, Yamauchi T: Adiponectin and adiponectin receptors. Endocrine Reviews 2005; 26(3): 439-451.
4. Kadowaki T, Yamauchi T, Kubota N et al.: Adiponectin and adiponectin receptors in insulin resistance, diabetes and metabolic syndrome. J Clin Endocrinol Metab 2006; 16(7): 1784-1792.
5. Maeda N, Shimomura I, Kishida K et al.: Diet-induced insulin resistance in mike lacking adiponectin ACRP30. Nat Med 2002; 8: 731-737.
6. Pyrżak B, Rumińska M, Popko K et al.: Adiponectin as a biomarker of the metabolic syndrome in children and adolescents. Eur J Med Res 2010; 16 (suppl. II): 1-5.
7. Slaughter MH, Lohman TG, Christ CB et al.: Skinfold equations for estimation of body fitness in children and youth. Human Biology 1998; 60: 709-723.
8. Cole TJ, Lobstein T: Establish a standard definition for child overweight and obesity worldwide: international survey. BMJ 2000; 320: 1240-1243.
9. www.healthforallchildren.co.uk
10. Kłosiewicz-Latoszek L, Cybulska B: Diagnostyka i klasyfikacja dyslipidemii. [W:] Cybulska B, Kłosiewicz-Latoszek L (red.): Zaburzenia lipidowe. Termedia Wydawnictwo Medyczne, Poznań 2011: 45-53.
11. Polskie Towarzystwo Diabetologiczne: Zalecenia kliniczne dotyczące postępowania u chorych na cukrzycę. Diabetologia Doświadczana i Kliniczna 2013; 2 (suppl. A): A3.
12. Ten S, Maclaren N: Insulin resistance syndrome in children. J Clin Endocrinol Metab 2004; 89(6): 2526-2539.
13. Ostrowska-Nawarycz L, Nawarycz T: Normy ciśnienia tętniczego u dzieci i młodzieży – doświadczenia łódzkie. Arterial Hypertension 2007; 11(2): 138-150.
14. Zimmet P, Alberti K, George MM et al.: The metabolic syndrome in children and adolescents – an IDF consensus report. Pediatric Diabetes 2007; 8: 299-306.
15. Friend AJ, Craig LCA, Turner SW: The prevalence of metabolic syndrome in children – a systematic review. Arch Dis Child 2012; 97: 116-117.
16. Klünder-Klünder M, Flore-Huerta S, Garcia-Macedo R et al.: Adiponectin in eutrophic and obese children as a biomarker to predict metabolic syndrome and each components. BMC Public Health 2013; 13: 88.
17. Sanguan O, Dundar B, Kösker M: Prevalence of metabolic syndrome in obese children and adolescents using three different criteria and evaluation of risk factors. J Clin Res Ped Endo 2011; 3(2): 70-76.
18. Pyrżak B, Majcher A, Rumińska M et al.: Analiza częstości występowania zespołu metabolicznego z zastosowaniem kryteriów Cooke’a, de Ferranti i IDF u dzieci z otyłością. Endo Pediatr 2008; 2, 2(23): 21-32.
19. Atwa HM, Sad A: Adiponectin could be a comprehensive marker of metabolic syndrome in obese children. A Afr Clin Nutr 2012; 25(2): 53-56.
20. Cizmecioglu FM, Etiler N, Ergen A et al.: Associotion of adiponectin, resistin and high sensitive CRP level with the metabolic syndrome in childhood and adolescence. Exp Clin Endocrinol Diabetes 2009 Nov; 117(10): 622-627.
21. Huang KCh, Lue BH, Yen RF et al.: Plasma adiponectin levels and metabolic factors in nondiabetic adolescents. Obesity Research 2004; 12(1): 119-124.
22. Weiss R, Dufour S, Groszan A et al.: Low adiponectin levels in adolescent obesity: a marker of increased intramyocellular lipids accumulation. J Clin Endocrinol Metab 2003; 88: 2014-2018.
23. Stefan N, Bunt JC, Salbe AD et al.: Plasma adiponectin concentration in children: relationship with obesity and insulinemia. J Clin Endocrinol Metab 2002; 87: 4652-4656.
24. Shaibi GQ, Cruz ML, Weigensberg J et al.: Adiponectin independently predicts metabolic syndrome in overweight Latino youth. J Clin Endocrinol Metab 2007 May; 92(5): 1809-1813.
25. Matsushita K, Yatsuya H, Tamakoshi K et al.: Comparison of circulating adiponectin and proinflammatory markers regading their association with metabolic syndrome in Japanese men. Arteriscler Thromb Vasc Biol 2006; 26: 872-876.
26. Choi KM, Yannakoulia M, Park MS et al.: Serum adipocyte fatty acid-binding protein, retinol-binding protein 4, and adiponectin concentrations in relation to the development of the metabolic syndrome in Korean boys: a 3-years prospective study. Am J Clin Nutr 2011; 93(1): 19-26.
27. Winer JC, Zern TL, Taksali SE et al.: Adiponectin in childhood and adolescent obesity and its association with inflammatory markers and components of metabolic syndrome. J Clin Endocrinol Metab 2006; 91: 4415-4423.
28. Magge SN, Stettler N, Koren D et al.: Adiponectin is associated with favorable lipoprotein profile, independent of BMI and insulin resistance, in adolescents. J Clin Endocrinol Metab 2011; 96: 1549-1554.
29. Ong KK, Frystyk J, Flyvbjerg A et al.: Sex discordant association with adiponectin levels and lipids profiles in children. Diabetes 2006; 55: 1337-1341.
30. Gherlan L, Vladoiu S, Alexiu F et al.: Adipocytokine profile and insulin resistance in childhood obesity. Meadica J Clin Med 2012; 7(3): 205-213.
31. El-Mesallamy HO, Hamdy NM, Ibrahim SM: Adiponectin and pro-inflammatory cytokines in obese diabetic boys. Indian Pediatric 2011 Oct 17; 48: 815-816.
32. Głowińska-Olszewska B, Urban M, Koput A: Adipocytokiny i markery zapalenia w zespole metabolicznym u młodzieży. Endo Pediatr 7/2008; 2(23).
33. Ouchi N, Kihara S, Funahashi T: Reciprocal association of C-reactive protein with adiponectin in blood stream and adipose tissue. Circulation 2003;107: 671-674.