© Borgis - Postępy Nauk Medycznych 10/2014, s. 698-702
Ada Borowiec1, Monika Milczarek1, Katarzyna Wyborska1, Agata Cichal1, *Anna M. Kucharska2
Ocena suplementacji witaminą D u dzieci warszawskich po okresie niemowlęcym – badanie pilotażowe
Assessment of vitamin D supplementation in the Warsaw’s children after infancy – a preliminary study
1Student’s Scientific Group of the Department of Pediatrics and Endocrinology, Medical University of Warsaw
Student's scientific group supervisor: Anna M. Kucharska, MD, PhD
2Department of Pediatrics and Endocrinology, Medical University of Warsaw
Head of Department: Beata Pyrżak, MD, PhD
Streszczenie
Wstęp. Zapewnienie optymalnego stężenia 25-hydroksywitaminy D w surowicy krwi jest niezbędne, aby ujawniło się plejotropowe działanie witaminy D.
Cel pracy. Celem pracy była ocena zaopatrzenia w witaminę D dzieci warszawskich, na podstawie analizy dzieci hospitalizowanych w Klinice Pediatrii i Endokrynologii w okresie od sierpnia do grudnia 2012 roku.
Materiał i metody. Grupę badaną stanowiło 257 dzieci: 132 dziewczynki i 125 chłopców, średni wiek wynosił 10,44 ± 4,25 roku. Do badania włączono dzieci, które w trakcie hospitalizacji miały oznaczony poziom 25-hydroksywitaminy D – 25(OH)D. Stężenie oznaczano metodą chemiluminescencji z użyciem mikrocząstek (Abbott, Wiesbaden, Niemcy). Na podstawie analizy dokumentacji pacjentów oceniano korelacje między stężeniem 25(OH)D a wybranymi parametrami.
Wyniki. Średnie stężenie 25(OH)D w surowicy w grupie badanej wynosiło 23,86 ± 7,96 ng/ml. Zaledwie 21,40% dzieci osiągnęło zalecane wartości referencyjne powyżej 30 ng/ml. Wcześniejszą suplementację otrzymywało 38,13% dzieci. Grupę badaną podzielono na trzy podgrupy według suplementacji witaminą D: 159 dzieci bez suplementacji, 64 dzieci przyjmujących 500 IU/d, 34 dzieci otrzymujących 1000 IU/d. Dzieci otrzymujące suplementację miały istotnie statystycznie wyższe stężenia 25(OH)D niż pacjenci bez suplementacji (p < 0,005). Wykazano różnicę istotnie statystyczną między średnim stężeniem 25(OH)D u dzieci przed dojrzewaniem oraz dojrzewających (p = 0,002). U dzieci z otyłością stężenie 25(OH)D było istotnie niższe w porównaniu do pozostałych pacjentów (p = 0,00001).
Wnioski. U większości dzieci grupy badanej poziom 25(OH)D w surowicy jest poniżej zalecanych wartości referencyjnych. Nieliczne dzieci mają suplementację witaminą D, pozwalającą na utrzymanie odpowiedniego stężenia 25(OH)D. Zapotrzebowanie na witaminę D jest wyższe w okresie dojrzewania oraz u dzieci otyłych.
Summary
Introduction. An adequate concentration of blood 25-hydroxyvitamin D promotes pleiotropic actions of vitamin D.
Aim. The aim of the study was to assess the vitamin D status in the Warsaw’s children after infancy. Study data were collected from records of children hospitalized in the Department of Pediatrics and Endocrinology in the period August-December 2012.
Material and methods. Study group included 257 children: 132 girls and 125 boys, mean age 10.44 ± 4.25 years. Serum 25-hydroxyvitamin D – 25(OH)D – concentrations were measured at hospitalization with Microparticles Chemiluminescence (Abbott, Wiesbaden, Germany). The study analysis included the correlations between 25(OH)D concentration and selected variables.
Results. Mean 25(OH)D concentration was estimated at 23.86 ± 7.96 ng/ml. Only 21.40% of children approximated values higher than 30 ng/ml. Prior vitamin D supplementation was provided to 38.13% of children. 159 children had no supplementation whatsoever, 64 children were supplemented at a dose of 500 IU and 34 children at a dose of 1000 IU. 25(OH)D concentration in children supplemented with vitamin D was significantly higher than in patients without supplementation (p < 0.005). A statistically significant difference was observed between mean 25(OH)D level in pubertal and pre-pubertal children (p = 0.002). The mean 25(OH)D concentration was significantly lower in obese children than in other patients (p = 0.00001).
Conclusions. According to our study data vitamin D dose of 500-1000 IU/d is required to maintain the current level in the blood. Few children receive vitamin D supplementation which favors the maintenance of adequate 25(OH)D concentration. During puberty as well as in obese children the requirement for vitamin D is higher.
INTRODUCTION
Numerous research studies of the last decades have revolutionized our perception of the role vitamin D in the human body. Apart from its well-known classic actions on musculoskeletal health, vitamin D has other pleiotropic effects (1): affects the immune system by reducing the number of respiratory infections (2, 3) minimizes the development of autoimmune diseases such as multiple sclerosis (4), diabetes type 1 (5), Crohn’s disease (6), rheumatoid arthritis (7), systemic lupus erythematosus (8), asthma (9). Vitamin D also has a positive influence on the cardio-vascular system and endocrine system (10). Vitamin D deficiency impacts the prevalence of numerous common diseases such as hypertension, cardiovascular disease (11), diabetes (12) and several types of malignancies (13).
The main natural source of vitamin D is the skin (14). The most effective vitamin D synthesis is achieved when 35% of skin is exposed to summer sun at a daily dose of 90 minutes between 10 am and 3 pm local time (15). Vitamin D is also provided in food. The diet most rich in vitamin D consists of oily fish such as wild salmon, sardines, mackerel, as well as cod liver oil. In developed countries however changes of eating habits and rhythm of daily activity in school children have led to vitamin D deficiencies (16). School-age children spend most of their time indoors in classrooms and on indoor activities. Effective vitamin D cutaneous synthesis is therefore possible only during holidays. Moreover, in most countries regular vitamin D supplementation is provided only during infancy.
AIM
The aim of the study was to assess the vitamin D status in the Warsaw’s children after infancy. Study data was collected from records of children hospitalized in the Department of Pediatrics and Endocrinology of the Medical University of Warsaw in the period August-December 2012.
MATERIAL AND METHODS
The study included 257 children: 132 girls (51.4%) and 125 boys (48.6%), mean age 10.44 ± 4.25 years. The study group comprised 63 pre-pubertal children (25 girls and 38 boys) and 186 children at puberty (102 girls and 84 boys). 3 boys with congenital adrenal hyperplasia and 5 girls with precocious puberty were not included to this analysis.
Children were hospitalized for infectious diseases (2.3%) and endocrine disorders: growth hormone deficiency (27.2%), short stature (23.4%), thyroid disease (12.8%), obesity (12.8%), precocious puberty (7.8%), type 1 diabetes (5.0%), multiple pituitary hormone deficiency (3.5%), Turner’s syndrome (3.50%). Other grounds for hospitalization (8.2%) included individual characteristics/ailments such as headaches, stomach aches and syncope. Patients on steroid therapy were excluded from the study.
This retrospective analysis included records of patients hospitalized in the clinic in the period 1st August-31st December 2012 with determined serum 25-hydroxyvitamin D (25(OH)D) levels. Serum 25-hydroxyvitamin D concentration was measured by Chemiluminescence Microparticle Immunoassay (Abbott, Wiesbaden, Germany). Subsequent assessment of vitamin D status was performed according to the classification guidelines for Central Europe 2013, which define the sufficient 25-hydroxyvitamin D concentration as higher than 30 ng/ml, insufficient as 20-30 ng/ml and deficient as below 20 ng/ml (15).
Statistical analysis was performed to determine the relationship of 25(OH)D concentration to age, sex, vitamin D supplementation, puberty status, type of diagnosis, and the month when blood tests was made. Inter-group differences were compared with the T-Student test. A two-tailed 0.05 significance level was considered. Evaluation of correlation was performed using the Spearman test.
RESULTS
Powyżej zamieściliśmy fragment artykułu, do którego możesz uzyskać pełny dostęp.
Mam kod dostępu
- Aby uzyskać płatny dostęp do pełnej treści powyższego artykułu albo wszystkich artykułów (w zależności od wybranej opcji), należy wprowadzić kod.
- Wprowadzając kod, akceptują Państwo treść Regulaminu oraz potwierdzają zapoznanie się z nim.
- Aby kupić kod proszę skorzystać z jednej z poniższych opcji.
Opcja #1
29 zł
Wybieram
- dostęp do tego artykułu
- dostęp na 7 dni
uzyskany kod musi być wprowadzony na stronie artykułu, do którego został wykupiony
Opcja #2
69 zł
Wybieram
- dostęp do tego i pozostałych ponad 7000 artykułów
- dostęp na 30 dni
- najpopularniejsza opcja
Opcja #3
129 zł
Wybieram
- dostęp do tego i pozostałych ponad 7000 artykułów
- dostęp na 90 dni
- oszczędzasz 78 zł
Piśmiennictwo
1. Van Belle TL, Gysemans C, Mathieu C: Vitamin D in autoimmune, infectious and allergic diseases: A vital player? Best Practice & Research Clinical Endocrinology & Metabolism 2011; 25: 617-632.
2. Ginde AA, Mansbach JM, Camargo CA: Association between serum 25-hydroxyvitamin D level and upper respiratory tract infection in the Third National Health and Nutrition Examination Survey. Arch Intern Med 2009; 169: 384-390.
3. Urashima M, Segawa T, Okazaki M et al.: Randomized trial of vitamin D supplementation to prevent seasonal in?uenza A in schoolchildren. Am J Clin Nutr 2010; 91: 1255-1260.
4. Myhr KM: Vitamin D treatment in multiple sclerosis. J Neurol Sci 2009; 286: 104-108.
5. Zipitis CS, Akobeng AK: Meta-analysis Risk of Type 1 Diabetes: a Systematic Review and Vitamin D Supplementation in Early Childhood and Meta-analysis. Arch Dis Child 2008; 93: 512-517.
6. Cantorna MT: Progress in Biophysics and Molecular Biology 2006; 92: 60-64.
7. Cutolo M, Otsa K, Laas K et al.: Circannual vitamin D serum levels and disease activity in rheumatoid arthritis: Northern versus Southern Europe. Clinical and Experimental Rheumatology 2006; 24: 702-704.
8. Casella CB, Seguro LPC, Takayama L et al.: Juvenile onset systemic lupus erythematosus: a possible role for vitamin D in disease status and bone health. Lupus 2012; 21: 1335-1342.
9. Brehm JM, Schuemann B, Fuhlbrigge AL et al.: Serum vitamin D levels and severe asthma exacerbations in the Childhood Asthma Management Program study. J Allergy Clin Immunol 2010; 126: 52-58.
10. Norman AW: From vitamin D to hormone D: fundamentals of the vitamin D endocrine system essential for good health. Am J Clin Nutr 2008; 88: 491S-499S.
11. Kumar J, Muntner P, Kaskel FJ et al.: Prevalence and associations of 25-hydroxyvitamin D deficiency in US children: NHANES 2001-2004. Pediatrics 2009; 124(3): e362-370.
12. Gorham ED, Garland CF, Burgi AA et al.: Lower prediagnostic serum 25-hydroxyvitamin D concentration is associated with higher risk of insulin-requiring diabetes: a nested case – control study. Diabetol 2012; 55: 3224-3227.
13. Egan KM, Sosman JA, Blot WJ: Sunlight and Reduced Risk of Cancer: Is The Real Story Vitamin D? J Natl Cancer Inst 2005; 97: 161-163.
14. Holick MF: Vitamin D: Sources and Health Benefits. Stand Med, Pediatr 2007; 9: 705-715.
15. Płudowski P, Kaczmarewicz E, Bayer M et al.: Practical guidelines for the supplementation of vitamin D and the treatment of deficits in Central Europe – recommended vitamin D intakes in the general population and groups at risk of vitamin D deficiency. Endokrynol Pol 2013; 64: 319-327.
16. Huh SY, Gordon CM: Vitamin D deficiency in children and adolescents: Epidemiology, impact and treatment. Rev Endocr Metab Disord 2008; 9: 161-170.
17. Matsuoka LY, Wortsman J, Hollis BW: Use of topical sunscreen for the evaluation of regional synthesis of vitamin D3. J Am Acad Dermatol 1990; 22: 772-775.
18. Holick MF: Environmental factors that influence the cutaneous production of vitamin D. Am J Clin Nutr 1995; 61: 638S-645S.
19. Holick MF, Matsuoka LY, Wortsman J: Regular use of sunscreen on vitamin D levels. Arch Dermatol 1995; 131: 1337-1339.
20. Faurschou A, Beyer DM, Schmedes A et al.: The relation between sunscreen layer thickness and vitamin D production after ultraviolet B exposure: a randomized clinical trial. Br J Dermatol 2012; 167: 391-395.
21. Marks R, Foley PA, Jolley D et al.: The effect of regular sunscreen use on vitamin D levels in an Australian population: results of a randomized controlled trial. Arch Dermatol 1995; 131: 415-421.
22. Lorenc RS, Karczmarewicz E, Krzyśkiewicz E et al.: Vitamin D provision and supplementation standards. Stand Med, Pediatr 2012; 9: 595-604.
23. Au LE, Harris SS, Jacques PF et al.: Adherence to a Vitamin D Supplement Intervention in Urban Schoolchildren. J Acad Nutr Diet 2014; 114: 86-90.
24. Wayse V, Yousafzain A, Mogale K et al.: Association of subclinical vitamin D deficiency with severe acute lower respiratory infection in Indian children under 5 y. Eur J Clin Nutr 2004; 58: 563-567.
25. Holick MF, Chen TC: Vitamin D deficiency: a worldwide problem with health consequences. Am J Clin Nutr 2008; 87 (suppl.): 1080S-1086S.
26. Souberbielle JC, Body JJ, Lappe JM et al.: Vitamin D and musculoskeletal health, cardiovascular disease, autoimmunity and cancer: recommendations for clinical practice. Autoimmun Rev 2010; 9: 709-715.
27. Wortsman J, Matsuoka LY, Chen TC et al.: Decreased bioavailability of vitamin D in obesity. Am J Clin Nutr 2000; 72: 690-693.
28. Balasubramanian S, Dhanalakshmi K, Amperayani S: Vitamin D deficiency in childhood – A review of current guidelines on diagnosis and management. Indian Pediatrics 2013; 50: 669-675.
29. Holick MF, Binkley NC, Holick HA et al.: Evaluation, Treatment, and Prevention of Vitamin D Deficiency: an Endocrine Society Clinical Practice Guideline J Clin Endocrinol Metab 2011; 96(7): 1911-1930.
30. Huh SY, Gordon CM: Vitamin D deficiency in children and adolescents: epidemiology, impact and treatment. Rev Endocr Metab Disord 2008; 9: 161-170.
31. Gordon CM, DePeter KC, Feldman HA et al.: Prevalence of Vitamin D Deficiency Among Healthy Adolescents. Arch Pediatr Adolesc Med 2004; 158: 531-537.