© Borgis - Postępy Nauk Medycznych 7/2015, s. 515-523
*Joanna Bartnicka1, Grzegorz Kowalski2, Agnieszka Ziętkiewicz1
Identyfikacja zagrożeń dla układu mięśniowo-szkieletowego u chirurgów wykonujących zabiegi laparoskopowe
Identification of musculoskeletal hazards for laparoscopic surgeons
1Institute of Production Engineering, Faculty of Organisation and Management, Silesia University of Technology, Zabrze
Vice Director for Science in Institute: Joanna Bartnicka, PhD, Eng
2Department of General Surgery with Sub-department of Metabolic and Bariatric Surgery, District Railway Hospital, Katowice – S.P.Z.O.Z.
The Head of Department: Grzegorz Kowalski, MD
Streszczenie
Wstęp. Niniejszy artykuł poświęcony jest tematyce zagrożeń, jakie towarzyszą chirurgom podczas wykonywania zabiegów laparoskopowych i mogą ujawnić się nadmiernym obciążeniem określonych segmentów układu narządu ruchu.
Cel pracy. W pracy skoncentrowano się na nowej, w stosunku do przeanalizowanych doniesień literaturowych, metodyce identyfikacji zagrożeń, opartej na przekrojowych analizach ergonomicznych, których podstawą jest zapis wideo i pomiary pozycji ciała chirurga podczas rzeczywistych zabiegów chirurgicznych.
Materiał i metody. Badania naukowe obejmowały trzy fazy: diagnostyczną, symulacyjną i zasadniczą. Celem badań diagnostycznych było określenie głównych problemów w zakresie ergonomii pozycji ciała i związanych z nimi zagrożeń dla układu mięśniowo-szkieletowego. Badania symulacyjne miały na celu zidentyfikowanie ograniczeń i określenie warunków koniecznych w zakresie dokonywania rejestracji wideo rzeczywistych zabiegów chirurgicznych oraz akwizycji w czasie rzeczywistym danych pomiarowych określających pozycje ciała chirurga. Celem badań zasadniczych było pozyskanie wiedzy na temat możliwości identyfikacji zagrożeń dla układu narządu ruchu u chirurgów na podstawie zarejestrowanych w warunkach rzeczywistych czynności operacyjnych, a ponadto określenie możliwości tworzenia map ryzyka wystąpienia zagrożenia dla układu mięśniowo-szkieletowego w zależności od warunków realizacji procedury chirurgicznej.
Wyniki. Dokonano identyfikacji zależności pomiędzy przyjmowaniem przez chirurgów uciążliwych pozycji przy pracy a określonym etapem zabiegu i rodzajem narzędzi chirurgicznych.
Wnioski. Synchronizacja zapisu wideo zabiegu chirurgicznego z danymi ilościowymi identyfikującymi pozycje krytyczne układu narządu ruchu umożliwia tworzenie map zagrożeń dla chirurgów oraz określenie słabych i mocnych punktów całego procesu przebiegu zabiegu, a ponadto może ujawnić nową wiedzę w zakresie organizacji i ergonomii pracy w chirurgii.
Summary
Introduction. This article is dedicated to the problematic of hazards that accompany surgeons during laparoscopic procedures, and may affected in excessive loads of certain segments of musculoskeletal system.
Aim. The work focuses on new, in relation to the literature, methods for identifying hazards based on cross-sectional ergonomic analysis with the use of video recording and measurements of body position surgeon during the real surgical procedures.
Material and methods. Research included three phases: diagnostic, simulation and fundamental. The aim of the diagnostic study was to determine the main problems in the field of body position ergonomics and the associated risks for the musculoskeletal system. Simulation study aimed at identifying the constraints and determining the conditions that are necessary in terms of making video recordings of real surgical procedures as well as real-time acquisition of measurement data defining postures surgeon. The aim of the fundamental study was to acquire basic knowledge about how to identify hazards for musculoskeletal of surgeons based on video recordings in real operational conditions, and to investigate the possibility of creating hazard maps in the field of musculoskeletal disorders.
Results. There was identified relationships between the certain stressed body postures of surgeons and particular stage of the procedure as well as the type of surgical instruments.
Conclusions. The synchronization of both video recordings of surgery and quantitative data identifying critical positions of the musculoskeletal system makes it possible to create hazard maps for surgeons and enables identification of the weak and strong points of the entire surgical procedure. This methodology may also reveal new knowledge in the work organization, workflow and ergonomics in surgery.
Introduction
Laparoscopic surgery is a more common alternative to open surgery, inter alia because of such advantages for patient as reduction of post-operative pain, shorter hospitalization, decreased loss of blood, reduced risk of infection or surgical complications (1, 2).
The positive, in relation to the patient, aspects of using laparoscopic techniques unfortunately does not go hand in hand with the comfort of laparoscopic surgeon. The literature sources regarding ergonomics of laparoscopic procedures clearly indicate a problem with the static burden by surgeons.
This problem applies to non-physiological position of the body during surgery which is more upright with fewer moves of back and a smaller range of motion than among surgeons performing open operations (3). Characteristic factors are also uncomfortable, repetitive movements of the upper limbs as well as long-lasting static posture of the head (2).
In most cases, when performing laparoscopic procedures, the surgeons adopt the standing position which entails the risk of loss of stability. In fact surgeons have limited ability to move their body weight. They must quite often do precise movements by hands while standing only on one leg and use their foot to operate the pedals of laparoscopic devices (3-6).
I addition, the design of laparoscopic instruments and the way of using them determines the untypical positions of the arms, hands and fingers (7).
These all factors which define the laparoscopic surgeon body positions can take the form of health hazards, especially in relations to the musculoskeletal system. Particularly they include awkward and uncomfortable positions for long period of time as well as the repeatability of operations. The literature review draws attention to the consequences of such risks like overload of the musculoskeletal system (8-11), neuro-musculoskeletal dysfunctions (12), discomfort and arms paresthesia and formation within them injuries and nerve irritation (7, 13) as well as a great physical fatigue (14).
The literature report shows that dominant research methods applied to the ergonomic diagnosis among surgeons were:
– surveys, such as a questionnaire or interview (9, 10, 15-18),
– direct observation with video recording of surgical procedures (11),
– simulation studies (18).
In turn, the material gathered on the basis of that research was used mainly for identifying general trends of the hazards for musculoskeletal system indicating rather the need for further, more detailed studies in this area. According to the authors the detailing refers to:
– hazards assessment for specific segments of the musculoskeletal system,
– strict connection between certain type of hazards and specific activities performed by surgeon during surgery,
– identification of the differences and commonalities in terms of hazards, depending on the type of surgery,
– identification of relationships and dependencies existing between various factors influencing working conditions.
Taking into account the results and ways of performing previous studies, the authors of this article have adopted a different way of conducting research. An essential part of this procedure are in fact research doing in a real work environment, in particular with regard to measurements based on wireless capturing body position of surgeon during the whole surgery. Such procedure allows to perform the detailed studies, enabling formulation of cross-sectional conclusions giving a complete picture of the ergonomics in relation to the performance of laparoscopic procedures.
Aim
The aim of the article is to present the methodology for identification of hazards of laparoscopic surgeons basing on cross-sectional ergonomic research. The main assumption of the research is a synchronization of graphical data which is video material of performing surgery and ergonomic data which are surgeon’s body positions acquired by wireless sensors: goniometer and torsiometer.
Material and methods
The research was divided into three main phases:
1. The phase of diagnostic studies based on: a) survey with participation of surgeons performing laparoscopic procedures; b) participant observation of surgeries.
2. The phase of simulation studies based on: a) observational study; b) video recording; c) measurements of body position during the simulated operations.
3. The phase of fundamental research based on: a) measurements of body position during the real surgical laparoscopic procedures with the use of Captiv system (20); b) video recording; c) ergonomic analysis.
The aim of diagnostic studies was to diagnose of major problems in terms of body position ergonomics, and associated risks for musculoskeletal disorders and to identify possible causes and consequences of the postural loads of surgeons. The main research technique applied in this part of the study was a questionnaire. In addition, the interview method was used free interview and participant observation.
The results of preliminary tests allowed the delineation of specific research directions, including the formulation of basic research and definition of appropriate testing procedure. A preparatory element for their implementation was, in turn, the simulation study and in particular identification of constraints and designation of necessary conditions in terms of making a video recording of surgical procedures and real-time acquisition of measurement data defining the surgeon body positions that he adopts during surgery.
The aim of the basic research was to acquire knowledge about the possibilities of hazards identification for musculoskeletal system of surgeons based on recorded operational activities in real conditions and to investigate the possibility of creating risk maps of hazards for certain segments of the musculoskeletal system depending on the type of surgical procedure. These maps was called „health hazard maps”. In particular, the basic research was based on the methodology that integrates three components:
a) video-registration of surgical procedures,
b) measurement data describing the surgeons’ body positions during surgeries,
c) safety zone ranges of motion of individual body segments.
The environment in which the mentioned integration has been done is software environment of CAPTIV. In this environment the measurement data indicating the angular data of surgeons’ body position during surgery are collected and synchronization of these data with video recording is performed. In the same software environment the body positions to certain security zones is assigned. This action is done by defining the appropriate mathematical models. Thus, it is possible to identify critical positions, i.e. those which can be a potential source of risks for musculoskeletal system.
Safety zones, included in the studies, have been defined on the basis of biomechanical models developed at the Center for Ergonomics, University of Michigan under the direction of Don B. Chaffin (19). There are highlighted four zones: two zones preferred, i.e. the zone 0 and zone 1, which indicate the minimum the postural stress for muscles and joints, and in addition zone 2, which indicates increased postural stress and zone 3 indicating the extreme positions for muscles and joints, wherein they should be avoided during operation and which represent a risks of musculoskeletal disorders.
The assumption was taken in the studies, that all the body positions from zone 3 are critical and should be placed on the hazard maps. In turn, the assigning positions from zone 2 to the map is dependent on additional factors affecting postural load, i.e. the length of maintaining a given position, the maintained external weight, the value of the forces required to perform the activity and the factor of repeatability activities.
Table 1 presents an aggregated information on source materials gathered in the phase of diagnostic and basic research.
Table 1. Specification of research material.
Research method | Quantitative data |
Questionnaire | The number of surgeons participating in the survey n = 56 |
Free inteview | The number of surgeons participating in the survey n = 4 |
Observations participating and/or video-recordings of surgeries | The number of operators surgeons participating in the study n = 4 |
The number of observed/recorded surgical procedures n = 196 including: Cholecystectomy n = 82 Inguinal Hernia Surgery n = 20 Sleeve Gastrectomy n = 46 Gastric bypass n = 20 Colectomy n = 28 |
Source all tables: own elaboration
Results
Survey results
The survey were divided into two stages. The first step was to conduct a survey in which was used questionnaire drawn up by the project LapForm (527985-LLP-1-2012-ES-LEONARDO-LMP), whose realization took place in 2012-2014 with financial support from the European Commission under the „Lifelong Learning Programme”. The second stage was consisted of free interviews to clarify or complement certain issues discussed in the questionnaire. The questionnaire was divided into six main areas:
1. Personal data.
2. Experience in laparoscopic surgery.
3. Course features.
4. Level of knowledge.
5. Problems of ergonomics.
6. Training needs.
Taking into account the purpose of the present study, in the article there was omitted a discussion of the third area: Course features.
Personal data
The average work experience in performing laparoscopic procedure of respondents was 12.3 years, which means that the answers are reliable and crucial for achieving the study. The vast majority of laparoscopic surgeons are men, i.e. 75 percent of respondents.
When analyzing the age of the respondents it can be concluded that a clear majority are people over 36 years of age. The doctors at the age of 25-35 years represent less than 30 percent of respondents. The age of respondents are linked to a certain extent to the job position. Table 2 presents the employment structure of respondents due to the workplace.
Table 2. The structure of respondents by work position.
Position | Number of persons | Percentage |
Resident | 8 | 14.29% |
Medical specialist | 27 | 48.21% |
Medical assistant | 8 | 14.29% |
Head of department | 7 | 12.50% |
n/d | 6 | 10.71% |
Total | 56 | 100% |
The experience in performing laparoscopic procedures
On average, during the working day, surgeons spend from 1 hour to 2 hours in performing laparoscopic procedures. The most commonly performed laparoscopic procedures among surveyed surgeons are procedures in the abdominal area, including the removal of gallbladder (cholecystectomy) and inguinal hernia (TAPP hernioplasty).
The level of knowledge in the field of laparoscopic and ergonomics
The survey revealed a limited awareness of the respondents in terms of ergonomics during laparoscopic procedures. The reason of that is the lack of training in this field both at the stage of education, higher education, specialization, as well as professional practice. Only 18 percent of respondents have participated in ergonomics training.
Ergonomic problems
Powyżej zamieściliśmy fragment artykułu, do którego możesz uzyskać pełny dostęp.
Mam kod dostępu
- Aby uzyskać płatny dostęp do pełnej treści powyższego artykułu albo wszystkich artykułów (w zależności od wybranej opcji), należy wprowadzić kod.
- Wprowadzając kod, akceptują Państwo treść Regulaminu oraz potwierdzają zapoznanie się z nim.
- Aby kupić kod proszę skorzystać z jednej z poniższych opcji.
Opcja #1
29 zł
Wybieram
- dostęp do tego artykułu
- dostęp na 7 dni
uzyskany kod musi być wprowadzony na stronie artykułu, do którego został wykupiony
Opcja #2
69 zł
Wybieram
- dostęp do tego i pozostałych ponad 7000 artykułów
- dostęp na 30 dni
- najpopularniejsza opcja
Opcja #3
129 zł
Wybieram
- dostęp do tego i pozostałych ponad 7000 artykułów
- dostęp na 90 dni
- oszczędzasz 78 zł
Piśmiennictwo
1. Stanowski E, Paśnik K: Sprzęt i instrumenty stosowane w chirurgicznym leczeniu otyłości. Przemyślenia własne. Postępy Nauk Medycznych 2009; 7: 524-530.
2. Borycka-Kiciak K, Janaszek Ł, Kiciak A, Tarnowski W: Laparoskopia w chirurgii nieswoistych chorób zapalnych jelit. Postępy Nauk Medycznych 2011; 1: 49-56.
3. Berguer R, Rab GT, Abu-Ghaida H et al.: A comparison of surgeons’ posture during laparoscopic and open surgical procedures. Surg Endosc 1997; 11: 139-142.
4. Berguer R: Surgery and ergonomics. Archives of Surgery 1999; 134: 1011-1016.
5. Nguyen NT, Ho HS, Smith WD et al.: An ergonomic evaluation of surgeons’ axial skeletal and upper extremity movements during laparoscopic and open surgery. The American Journal of Surgery 2001; 182: 720-724.
6. Gofrit ON, Mikahail AA, Zorn KC et al.: Surgeons’ Perceptions and Injuries During and After Urologic Laparoscopic Surgery. Urology 2008; 71(3): 404-407.
7. Matern U, Eichenlaub M, Waller P, Ruckauer K: MIS instruments. An experimental comparison of various ergonomic handles and their design. Surg Endosc 1999; 13: 756-762.
8. Babar-Craig H, Banfield G, Knight J: Prevalence of back and neck pain amongst ENT consultants: national survey. J Laryngol Otol 2003; 17: 979-982.
9. Esposito C, El Ghoneimi A, Yamataka A et al.: Work-related upper limb musculoskeletal disorders in paediatric laparoscopic surgery. A multicenter survey. J Pediatr Surg 2013; 48(8): 1750-1756.
10. Morandeira-Rivas A, Millán-Casas L, Moreno-Sanz C et al.: Ergonomics in laparoendoscopic single-site surgery: survey results. J Gastrointest Surg 2012; 16(11): 2151-2159.
11. Szeto GPY, Ho P, Ting ACW et al.: A study of surgeons’ postural muscle activity during open, laparoscopic, and endovascular surgery. Surg Endosc 2010; 24: 1712-1721.
12. Reyes DAG, Tang B, Cuschieri A: Minimal access surgery (MAS)-related surgeon morbidity syndromes. Surg Endosc 2006; 20(1): 1-13.
13. Berguer R: Surgical technology and the ergonomics of laparoscopic instruments. Surg Endosc 1998; 12: 458-462.
14. Bielecki K: Osobowość chirurga. Postępy Nauk Medycznych 2009; 3: 227-232.
15. Ruitenburg MM, Frings-Dresen MH, Sluiter JK: Physical job demands and related health complaints among surgeons. Int Arch Occup Environ Health 2013; 86(3): 271-279.
16. Sutton E, Irvin M, Zeigler C et al.: The ergonomics of women in surgery. Surg Endosc 2014; 28(4): 1051-1055.
17. Welcker K, Kesieme EB, Internullo E, Kranenburg van Koppen LJ: Ergonomics in thoracoscopic surgery: results of a survey among thoracic surgeons. Interact Cardiovasc Thorac Surg 2012; 15(2): 197-200.
18. Berguer R, Forkey DL, Smith WD: The effect of laparoscopic instrument working angle on surgeons’ upper extremity workload. Surg Endosc 2001; 15(9): 1027-1029.
19. Chaffin D, Andersson GBJ, Martin B: Occupational Biomechanics. 3rd ed., John Wiley & Sons, Inc., New York 1999.
20. http://teaergo.com/drupal/en/products/manufacturers/tea.
21. Rassweiler JJ, Goezen AS, Jalal AA et al.: A New Platform Improving the Ergonomics of Laparoscopic Surgery: Initial Clinical Evaluation of the Prototype. European Urology 2012; 61(1): 226-229.
22. Schurr MO, Buess GF, Wieth F et al.: Ergonomic surgeon’s chair for use during minimally invasive surgery. Surgical Laparoscopy Endoscopy & Percutaneous Techniques 1999; 4: 244-247, thanks to: Rassweiler JJ, Goezen AS, Jalal AA et al.: A New Platform Improving the Ergonomics of Laparoscopic Surgery: Initial Clinical Evaluation of the Prototype. European Urology 2012; 61(1): 226-229.