© Borgis - Postępy Nauk Medycznych 5/2017, s. 277-282
*Paweł Więch1, Dariusz Bazaliński1, Izabela Sałacińska1, Monika Binkowska-Bury1, Bartosz Korczowski2, 3
Usefulness of selected nutritional status indicators for body composition assessment in children with diagnosed autoimmune diseases and in healthy peers**
Użyteczność wybranych wskaźników stanu odżywienia do oceny składu ciała dzieci z rozpoznaną chorobą autoimmunizacyjną oraz dzieci zdrowych
1Department of Medicine, Institute of Nursing and Health Sciences, University of Rzeszów
Head of Department: Affiliate Professor Artur Mazur, MD, PhD, University of Rzeszów
2Department of Medicine, Institute of Physiotherapy, University of Rzeszów
Head of Department: Affiliate Professor Artur Mazur, MD, PhD, University of Rzeszów
3Pediatric Department, Clinical State Hospital in Rzeszów
Head of Department: Affiliate Professor Bartosz Korczowski, MD, PhD, University of Rzeszów
Streszczenie
Wstęp. Stan odżywienia odgrywa znaczącą rolę w rokowaniu leczniczym u dzieci przewlekle chorych i stanowi instrument monitorowania leczenia. Dobór właściwego wskaźnika stanu odżywienia skorelowanego o komponent masy tłuszczowej i beztłuszczowej pozwala efektywnie zdiagnozować dane zaburzenie a następnie wprowadzić niezbędną interwencję we właściwym czasie.
Cel pracy. Ocena użyteczności wybranych wskaźników stanu odżywienia w odniesieniu do składu ciała dzieci w momencie rozpoznania choroby autoimmunizacyjnej oraz dzieci zdrowych.
Materiał i metody. Ilościowa analiza porównawcza wskaźnika BMI, Cole’a oraz WMC Książyka w odniesieniu do masy tłuszczowej (FM) beztłuszczowej (FFM) u 108 dzieci z nowo rozpoznaną chorobą autoimmunizacyjną (type 1 diabetes 63, coeliac disease 15, ulcerative colitis 16, Crohn’s disease 14), oraz 108 dzieci zdrowych dobranych pod względem płci i wieku (age and sex matched controls).
Wyniki. Wykazano najwyższą dodatnią korelację pomiędzy BMI a masą tłuszczową (r = 0.878 dzieci chore vs. r = 0,789 dzieci zdrowe) oraz WMC a masą beztłuszczową (r = 0.873 dzieci chore vs. r = 0,894 dzieci zdrowe) w obu badanych grupach.
Wnioski. Przedstawione wyniki badań wykazały, że zawsze należy mieć na uwadze stan poszczególnych komponentów składu ciała dziecka. Korelacja liniowa masy tłuszczowej i beztłuszczowej do wskaźników BMI, WMC oraz Cole’a, odrębnie dla dzieci chorych i dzieci zdrowych, daje możliwość zastosowania optymalnego wskaźnika.
Summary
Introduction. Nutritional status is an important predictor of treatment outcomes in children with chronic diseases and an instrument used in treatment monitoring. A choice of the adequate nutritional status indicator correlated with fat mass and fat free mass components enables effective diagnosis of a specific disorder and, consequently, makes it possible to start necessary interventions at the right time.
Aim. The aim of this study was to assess usefulness of selected nutritional status indicators in relation to body composition in children with newly diagnosed autoimmune diseases and in healthy peers.
Material and methods. Quantitative analysis designed to compare BMI, Cole Index and Książyk WMC in relation to fat mass (FM), and fat free mass (FFM) in 108 children newly diagnosed with autoimmune disease (type 1 diabetes – 63, coeliac disease – 15, ulcerative colitis – 16, Crohn’s disease – 14), and in 108 healthy controls matched for age and sex.
Results. The most significant, positive correlations were found for BMI and fat mass (r = 0.878 sick children vs. r = 0.789 healthy children) and for WMC and fat free mass (r = 0.873 sick children vs. r = 0.894 healthy children) in both groups.
Conclusions. This research has shown that we should always take into account the condition of the specific components of body composition in children. The linear correlation of fat mass and fat free mass to BMI, WMC and COLE indexes identified separately for children with clinical conditions and for healthy peers, makes it possible to use optimal index.
Introduction
Nutritional status is an important predictor of treatment outcomes in children with chronic diseases and an instrument used in treatment monitoring (1). Body composition, represented by components of fat and fat-free mass, is significantly linked with survival rate, quality of life and duration of comorbidities (2).
In current clinical practice identification of impaired nutritional status relies closely on anthropometric measurements carried out in children. The recommended screening methods of assessing nutritional status in children include the simplest, non-invasive and the least costly anthropometric measurements (3, 4). The identified values should be compared to age and sex related norms in accordance with centile grids verified for a given population. Some difficulties result from the variety of recommended reference norms for the measurement values. Given this, to interpret such results we must explicitly define cut-off values, below/above which a given disorder is diagnosed (4, 5).
The most popular indicator assessing nutritional status in children is the body mass index (BMI) representing the quotient of body weight and height (BMI = body weight [kg]/body height [m2]) (6) and waist-hip ratio (WHR) (7). The calculated result is transferred onto centile grids representative for a given population, relative to the child’s sex and age (5, 8). At present it is believed that BMI highly correlates with in-depth nutritional status measures, such as skinfold thickness, bioimpedance and DXA (9). Unfortunately, numerous studies have questioned usefulness of the BMI for children with medical conditions (2, 10-14).
Widely accepted methods of anthropometric assessment of nutritional status also include Cole index, which is a transformed BMI, calculated as a quotient of the child’s actual BMI and 50th centile of BMI, multiplied by 100% [(BMI act./BMI 50th cent) x 100%]. The respective cut-off values are: > 120% (obesity), 110-119% (overweight), 90-109% (standard), 85-89% (slight malnutrition), 75-84% (modest malnutrition), < 75% (emaciation) (8).
One more, index examined here, is the body weight index (pol. współczynnik masy ciała – WMC) proposed by J. Książyk. WMC is a transformation of Body Mass Index (BMI) and the formula for body surface area proposed by DuBois (WMC = M1.425 x 71.84/L1.275, where M = body mass [kg], L = body length [cm]). The delineated WMC centile grids for boys and girls are a recommended tool in assessing nutritional status of children with medical conditions (15).
Methods of in-depth anthropometric assessment include, e.g. skinfold thickness measurement (3, 16) bioelectrical impedance analysis (BIA) (3, 16, 17) and dual-energy X-ray absorptiometry (DEXA) (3, 18). Other researchers worldwide have also suggested a number of indicators derived from components of body composition which can be useful in assessing nutritional status; these include: fat mass index (FMI) (19, 20), fat free mass index (FFMI) (19, 20), body cell mass index (BCMI) (2, 21) and phase angle (PA) (22, 23). In nutritional status assessments some importance can also be attributed to bioelectrical impedance vector analysis (BIVA) (22).
The present study was designed to examine selected indexes used in nutritional status assessment and to analyze their relationship to components of human body. This was an attempt to answer the following question: “Which of the indexes recommended for assessing nutritional status presents the highest correlation with changes in fat mass and fat free mass in sick and healthy children”. The present findings may provide a valuable tool for identifying a highly accurate nutritional status indicator, and consequently enable more effective identification of the existing impairment.
Aim
The aim of the study was to assess usefulness of selected nutritional status indicators in relation to body composition in children with newly diagnosed autoimmune diseases and in healthy peers.
Material and methods
Design and settings
The study was conducted from 2013 to 2015, at the Clinical Department of Paediatrics with Paediatric Neurology Unit, Regional Hospital No. 2 in Rzeszów, and Children’s Outpatient Clinic, Regional Hospital No. 2 in Rzeszów as well as in randomly selected primary, middle and secondary schools in rural and urban areas of the Podkarpackie Region, Poland. The examinations were performed in three stages, which were preceded by a month-long pilot study. Comparative analyses focused on BMI, Cole index and Książyk WMC, which were examined in relation to fat mass (FM) and fat free mass (FFM) in 108 children with newly diagnosed autoimmune diseases (type 1 diabetes – 63, coeliac disease – 15, ulcerative colitis – 16, Crohn’s disease – 14), and in 108 healthy controls matched for age and sex.
Sample
At the first stage the examinations involved a group of 256 children aged 4-18, diagnosed with medical conditions (type 1 diabetes – 138, coeliac disease – 55, ulcerative colitis – 34, Crohn’s disease – 29), including 108 children with newly diagnosed conditions linked with abnormal immune response and 148 children subjected to assessment of nutritional status and body composition parameters at various stages of treatment. The control group consisted of 243 healthy children attending randomly selected primary, middle and secondary schools in rural and urban areas of the Podkarpackie region.
Those qualified for the second stage included 108 children with newly diagnosed autoimmune diseases (type 1 diabetes – 63, coeliac disease – 15, ulcerative colitis – 16, Crohn’s disease – 14), and 108 healthy controls matched for age and sex. The study group consisted of 59 boys and 49 girls. Arithmetic mean age of the boys was 11.34 years ± 4.08 years, and girls 11.85 years ± 3.53 years.
Procedures
The subjects were measured for body mass and height (SECA 799 scale with telescopic height rod). The results provided data for calculating body mass index (BMI), body weight index (Książyk WMC) and Cole’s Index.
Measurement of body composition was performed using BIA-101 impedance analyzer from AKERN, Italy. The measurement was performed with tetrapolar system in a contralateral arrangement (amplitude of the measuring current 800 uA, sinusoidal, 50 kHz). Disposable electrodes were placed on the dorsal surface of the right upper limb (above the cavity of the wrist joint), and the right lower limb (ankle joint).
Variables
The measurement results were transferred to specialized software (Bodygram1_31 from AKERN) in order to compute fat mass (FM) and fat free mass (FFM). The equations used by the software to assess the specific parameters are restricted property of the company, but to a significant degree they are based on computing algorithms developed by Sun et al. (24). Subsequently the selected nutritional status indicators (BMI, Cole Index and Książyk WMC) were examined for correlations with fat mass (FM) and fat free mass (FFM) in the sick children and the healthy controls.
Bias
The examination of the study group was split into two stages, and the healthy controls participating in the second stage were matched for sex and age, in order to reduce estimation error resulting from potential effects of the applied treatment in the nutritional status and body composition, and to obtain a uniform group of children. Each subject from the study group was matched with a control subject by means of stratified sampling without replacement. During the first phase both groups were divided according to sex and age, and then in course of sampling without replacement a person was drawn from the control group, and assigned to a subject from the study group, with the use of random number generator – random ordering of elements with the use of “random” feature.
Powyżej zamieściliśmy fragment artykułu, do którego możesz uzyskać pełny dostęp.
Mam kod dostępu
- Aby uzyskać płatny dostęp do pełnej treści powyższego artykułu albo wszystkich artykułów (w zależności od wybranej opcji), należy wprowadzić kod.
- Wprowadzając kod, akceptują Państwo treść Regulaminu oraz potwierdzają zapoznanie się z nim.
- Aby kupić kod proszę skorzystać z jednej z poniższych opcji.
Opcja #1
29 zł
Wybieram
- dostęp do tego artykułu
- dostęp na 7 dni
uzyskany kod musi być wprowadzony na stronie artykułu, do którego został wykupiony
Opcja #2
69 zł
Wybieram
- dostęp do tego i pozostałych ponad 7000 artykułów
- dostęp na 30 dni
- najpopularniejsza opcja
Opcja #3
129 zł
Wybieram
- dostęp do tego i pozostałych ponad 7000 artykułów
- dostęp na 90 dni
- oszczędzasz 78 zł
Piśmiennictwo
1. Montagnese C, Santarpia L, Buonifacioa et al.: European food-based dietary guidelines: A comparison and update. European food-based dietary guidelines: A comparison and update. Nutrition 2015; 31: 908-915.
2. Murphy AJ, Hill RJ, Buntain H et al.: Nutritional status of children with clinical conditions. Clin Nutr 2016 [article in press].
3. Corsi DJ, Subramanyam MA, Subramanian SV: Commentary: Measuring nutritional status of children. Int J Epidemiol 2011; 40: 1030-1036.
4. Hartman C, Shamir R, Hecht C, Koletzko B: Malnutrition screening tools for hospitalized children. Curr Opin Clin Nutr Metab Care 2012; 15: 303-309.
5. Richardson L, Paulis WD, van Middelkoop M, Koes BW: An overview of national clinical guidelines for the management of childhood obesity in primary care. Prev Med 2013; 57: 448-455.
6. Nuttall F: Body Mass Index: Obesity, BMI, and Health. A Critical Review. Nutr Today 2015; 50: 117-128.
7. Płaczkowska S, Sobecka-Pawlik L, Kokot I et al.: Use of direct and indirect methods for measuring body composition of young people – preliminary report. Fam Med Prim Care Rev 2015; 17(1): 33-38.
8. Cole TJ, Bellizzi MC, Flegal KM, Dietz WH: Establishing a standard definition for child overweight and obesity worldwide: international survey. BMJ 2000; 320: 1240-1243.
9. Centers for Disease Control and Prevention: About Child & Teen BMI. Retrieved from: http://www.cdc.gov/healthyweight/assessing/bmi/childrens_bmi/about_childrens_bmi.html.
10. Engelen MP, Schroder R, Van der Hoorn K et al.: Use of body mass index percentile to identify fat-free mass depletion in children with cystic fibrosis. Clin Nutr 2012; 31: 927-933.
11. Hill RJ, Davies PS: You look all right to me: compromised nutritional status in paediatric patients with ulcerative colitis. J Pediatr Gastroenterol Nutr 2013; 56: 385-389.
12. Sheikh S, Zemel BS, Stallings VA et al.: Body composition and pulmonary function in cystic fibrosis. Front Pediatr 2014; 2: 33.
13. Wells JCD, Haroun JE, Williams D et al.: Body composition in young female eating-disorder patients with severe weight loss and controls: evidence from the four-component model and evaluation of DXA. Eur J Clin Nutr 2015; 69: 1330-1335.
14. Wiskin AE, Wootton SA, Hunt TM et al.: Body composition in childhood inflammatory bowel disease. Clin Nutr 2011; 30: 112-115.
15. Mowszet K, Piasecka A, Reich M, Iwańczak F: Przyczyny niedożywienia u dzieci do lat pięciu w materiale własnym. Adv Clin Exp Med 2005; 14: 315-322.
16. Cortez AP, de Morais, MB, Speridiao Pda G et al.: Food intake, growth and body composition of children and adolescents with autoimmune hepatitis. J Clin Gastroenterol 2010; 44: 200-207.
17. Girma T, Kæstel P, Workeneh N et al.: Bioimpedance index for measurement of total body water in severely malnourished children: Assessing the effect of nutritional oedema. Clin Nutr 2016; 35: 713-717.
18. Nishikawa H, Osaki Y: Liver Cirrhosis: Evaluation, Nutritional Status, and Prognosis. Mediators Inflamm 2015; 2015: 872152.
19. Demerath WW, Johnson W: Pediatric body composition references: what’s missing? Am J Clin Nutr 2013; 98: 1-3.
20. Wells JCK, Williams JE, Chomtho S et al.: Body-composition reference data for simple and reference techniques and a 4-component model: a new UK reference child. Am J Clin Nutr 2012; 96: 1316-1326.
21. Murphy AJ, Davies PSW: Body cell mass index in children: interpretation of total body potassium results. Br J Nutr 2008; 100: 666-668.
22. Norman K, Stobaus N, Pirlich M, Bosy-Westphal A: Bioelectrical phase angle and impedance vector analysis – clinical relevance and applicability of impedance parameters. Clin Nutr 2012; 31: 854-861.
23. Weber DR, Moore RH, Leonard MB, Zemel BS: Fat and lean BMI reference curves in children and adolescents and their utility in identifying excess adiposity compared with BMI and percentage body fat. Am J Clin Nutr 2013; 98: 49-56.
24. Sun SS, Chumlea WC, Heymsfield SB et al.: Development of bioelectrical impedance analysis prediction equations for body composition with the use of a multicomponent model for use in epidemiologic surveys. Am J Clin Nutr 2003; 77: 331-340.
25. Petrie A, Sabin C: Medical Statistics at a Glance. 3rd ed. Blackwell, Oxford 2009.
26. Freedman DS, Ogden CL, Berenson GS, Horlick M: Body mass index and body fatness in childhood. Curr Opin Clin Nutr Metab Care 2005; 8: 618-623.
27. Boeke CE, Oken E, Kleinman KP et al.: Correlations among adiposity measures in school-aged children. BMC Pediatrics 2013; 24: 99.
28. Srdić B, Obradović B, Dimitrić G et al.: Relationship between body mass index and body fat in children-age and gender differences. Obes Res Clin Prac 2012; 6: e91-e174.
29. Ochiai H, Shirasawa T, Nishimura R et al.: Relationship of body mass index to percent body fat and waist circumference among schoolchildren in Japan – the influence of gender and obesity: a population-based cross-sectional study. BMC Public Health 2010; 18: 493.
30. Peltz G, Aguirre MT, Sanderson M, Fadden MK: The role of fat mass index in determining obesity. Am J Hum Biol 2010; 22: 639-647.
31. Stupnicki R, Tomaszewski P, Milde K et al.: Body fat – based weight norms for children and youths. Pediatr Endocrinol Diabetes Metab 2009; 15: 139-143.
32. Pereira-da-Silva L, Dias MP, Dionísio E et al.: Fat mass index performs best in monitoring management of obesity in prepubertal children. J Pediatr 2016; 92: 421-426.