*Iwona Przywitowska1, Urszula Kaczmarek1, Grzegorz Bartnicki2, Alina Wrzyszcz-Kowalczyk1
Salivary flow rate, total protein and pH in caries-free children and adolescents aged between 5 and 18 years
Szybkość wydzielania śliny, białko całkowite i pH u dzieci wolnych od próchnicy w wieku od 5 do 18 lat
1Department of Conservative and Paediatric Dentistry, Medical University of Wrocław
Head of Department: Professor Urszula Kaczmarek, MD, PhD
2Department of Air Conditioning, Heating, Gas Supply, and Air Protection, Wroclaw University of Technology
Head of Department: Professor Renata Krzyżyńska, PhD, DSc
Streszczenie
Wstęp. Nieliczne i nie w pełni zgodne sa? dane dotycza?ce szybkości wydzielania śliny i poziomów jej składników w wieku rozwojowym.
Cel pracy. Celem pracy było porównanie szybkości wydzielania śliny, poziomu białka całkowitego i pH s?liny u osób w wieku od 5 do 18 lat, w celu uzyskania informacji o funkcjonalnym dojrzewaniu gruczołów s?linowych w okresie rozwojowym.
Materiał i metody. Zbadano 90 dzieci i młodzieży obojga płci w wieku od 5 do 18 lat wolnych od próchnicy. Badani byli wolni od próchnicy (wartość zero wskaźnika ICDAS II). Pobierano od nich niestymulowaną ślinę mieszaną, w której oznaczano pH i białko całkowite oraz szybkość wydzielania. Badanych podzielono na trzy grupy wiekowe: 5-6, 13-14 i 18 lat.
Na przeprowadzenie badań uzyskano zgodę Komisji Bioetycznej Uczelni Nr KB-335/2013.
Wyniki. W grupie wiekowej 5-6 lat zaobserwowano istotnie niższe wydzielanie śliny niż u osób w wieku 13-14 i 18 lat. Natomiast poziom pH śliny w najmłodszej grupie był istotnie wyższy w porównaniu ze starszymi grupami wiekowymi. Stężenie białka całkowitego było najniższe w wieku 5-6 lat, wyższe w wieku 13-14 lat i najwyższe w wieku 18 lat (różnica istotna między grupami 5-6 i 18 lat). Między grupami zauważono spadkowy trend poziomu pH, a wzrostowy stężenia białka. Rozpatrując wszystkich badanych, wykazano pozytywną korelację wieku z szybkością wydzielania i stężenia białka, a negatywną z poziomem pH. Ponadto wraz ze wzrostem sekrecji śliny obniżały się poziom pH i stężenie białka.
Wnioski. W wieku od 5 do 18 lat wzrasta spoczynkowa szybkość wydzielania śliny i stężenie białka całkowitego, a maleje poziom pH w spoczynkowej ślinie mieszanej.
Summary
Introduction. Data regarding salivary flow and the levels of salivary components in developmental age are scarce and not fully consistent.
Aim. The aim of the study was to compare unstimulated mixed saliva flow rate, pH and total protein in children aged between 5 and 18 years to obtain information on the functional maturation of salivary glands during the developmental period.
Material and methods. A total of 90 children and adolescents (both sexes) aged between 5 and 18 years were examined. All subjects were caries-free (ICDA II score zero). Unstimulated mixed saliva was sampled from all patients to assess pH, total protein and flow rate. The subjects were divided into age groups 5-6, 13-14 and 18 years.
The study was approved by the Bioethics Committee of the University (No. Nr KB-335/2013).
Results. Significantly lower salivary flow rates were observed in 5-6 year olds vs. 13-14 and 18-year-olds. In contrast, pH values were significantly higher in the youngest group compared to older age groups. Total protein was the lowest in 5-6 year olds, higher in 13-14 year olds and the highest at the age of 18 years (significant difference between age groups of 5-6 and 18 years). A decreasing trend in pH values and an increasing one in protein levels were observed between the age groups. Considering the entire group of subjects, a positive correlation between age and salivary flow rate and protein levels, and a negative correlation with pH were found. Moreover, pH and protein levels decreased with increasing salivary flow.
Conclusions. Unstimulated mixed saliva flow rate and total protein increase, while pH levels decrease between the ages of 5 to 18 years.
Introduction
Mixed or total saliva is a mixture of oral secretions, which come into direct contact with oral anatomical structures. It is a natural oral environment for hard and soft tissue exposure to external environmental factors and interactions between tissues, food, microbes and air. A variety of organic and mineral components contained in saliva allow for the normal course of multiple processes maintaining a healthy oral ecosystem (1, 2). Saliva is produced mainly by three paired large salivary glands, i.e. parotid, sublingual and submandibular glands, as well as, to a minor extent, by multiple (400-1000) small glands found in the oral mucosa. Under physiological conditions, the total daily volume of oral secretions ranges between 0.5 to 1 L in adults, including 80% of saliva stimulated by food. Each type of salivary gland produces secretion with a specific composition and properties, which depend on a number of factors, including diseases and pharmacotherapy (3-6). The major salivary glands produce about 90% of the total salivary volume. The secretions produced under stimulated conditions in parotid glands, which are the largest salivary glands (serous glands), constitute a thin aqueous liquid high in α-amylase and low in organic components and glycoproteins, contributing to about 53% of total saliva (7). Under unstimulated conditions, the amount of produced saliva is significantly lower, accounting for about 20-30% (1). The submandibular gland (SMG) is the second largest gland (8), which produces serous/mucous secretions. The gland produces less than a half of total saliva under stimulated conditions and 1/3 of total saliva under unstimulated conditions (8). Dense and viscous serous/mucous secretion produced by the sublingual glands, both stimulated and unstimulated, accounts for only a small proportion of total salivary volume (1, 8). Minor salivary glands produce mucous saliva high in proteins, which accounts for about 10% of total saliva (1, 8). Normal unstimulated and stimulated salivary flow rate is about 0.25-0.35 mL/min and 1-3 mL/min, respectively. Hyposalivation, i.e. reduced salivary flow, is defined as unstimulated salivary flow rate < 0.1 mL/min and stimulated salivary flow rate < 0.5-0.7 mL/min (1, 9-11). Salivary volume depends, among other things, on the quantity and quality of consumed foods, body hydration, emotional stimuli, age and sex (12, 13). Secretion of saliva follows a circadian rhythm. During sleep, salivary glands produce only about 2-10% of total daily volume, with submandibular and sublingual contributions of about 80 and 20%, respectively, and with arrested secretion in the parotid glands. Salivary flow increases by about 25-30% in the morning. Minor salivary glands do not follow a circadian rhythm, but maintain a steady level of secretion (14, 15). In humans, major salivary glands arise from a thickening of the oral ectoderm at around 4 to 6 weeks of foetal life for parotid glands, at the end of week 6 for submandibular glands, and 7-8 weeks for the sublingual gland. Minor salivary glands arise from ectodermal and endodermal thickening at the end of the 12th week. Further development involves complex interactions between epithelial cells and the adjacent mesenchymal cells, which induces and controls morphogenesis and salivary gland cell differentiation (16). At 16 weeks of gestation, the submandibular gland starts the production of serous secretions, the production of which is reduced at 28 weeks. The parotid gland begins to secrete at 18 weeks of gestation (17). It is assumed that salivary glands are functionally capable of secreting saliva already at the time of birth (18). However, studies indicate that age-related quantitative and qualitative changes in saliva are particularly pronounced in older patients compared to young individuals (19-21). Data regarding salivary flow and the levels of salivary components in developmental age are scarce and not fully consistent.
Aim
The aim of the study was to compare salivary flow rate, pH and total protein in children and adolescents to obtain information on the functional maturation of salivary glands during the developmental period.
Material and methods
Powyżej zamieściliśmy fragment artykułu, do którego możesz uzyskać pełny dostęp.
Mam kod dostępu
- Aby uzyskać płatny dostęp do pełnej treści powyższego artykułu albo wszystkich artykułów (w zależności od wybranej opcji), należy wprowadzić kod.
- Wprowadzając kod, akceptują Państwo treść Regulaminu oraz potwierdzają zapoznanie się z nim.
- Aby kupić kod proszę skorzystać z jednej z poniższych opcji.
Opcja #1
29 zł
Wybieram
- dostęp do tego artykułu
- dostęp na 7 dni
uzyskany kod musi być wprowadzony na stronie artykułu, do którego został wykupiony
Opcja #2
69 zł
Wybieram
- dostęp do tego i pozostałych ponad 7000 artykułów
- dostęp na 30 dni
- najpopularniejsza opcja
Opcja #3
129 zł
Wybieram
- dostęp do tego i pozostałych ponad 7000 artykułów
- dostęp na 90 dni
- oszczędzasz 78 zł
Piśmiennictwo
1. Humphrey SP, Williamson RT: A review of saliva: normal composition, flow and function. J Prosthet Dent 2001; 85: 162-169.
2. Falca?o DP, da Mota LM, Pires AL et al.: Sialometry: aspects of clinical interest. Rev Bras Reumatol 2013; 53: 525-531.
3. Drobitch RK, Svensson CK: Therapeutic drug monitoring in saliva. An update. Clin Pharmacokinet 1992; 23: 365-379.
4. Forde MD, Koka S, Eckert SE et al.: Systematic assessments utilizing saliva: Part 1 General Considerations and Current Assessments. Int J Prosthodont 2006; 19: 43-52.
5. Sreebny LM: Saliva in health and disease: an appraisal and update. Int Dent J 2000; 50: 140-161.
6. Murray Thomson W, Poulton R, Broadbent JM et al.: Xerostomia and medications among 32-year-old. Acta Odontol Scand 2006; 64(4): 249-254.
7. Proctor GB: The physiology of salivary secretion. Periodontol 2000 2016; 70(1): 11-25.
8. Silvers AR, Som PM: Salivary Glands. Radiol Clin North Am 1998; 36: 941-966.
9. Bergdahl M: Salivary flow rate and oral complaints in adult dental patients. Community Dent Oral Epidemiol 2000; 28(1): 59-66.
10. Paszyn?ska E: Wybrane czynniki wpływaja?ce na wydzielanie i skład s?liny – omówienie aktualnego pis?miennictwa. Dental Forum 2005; 1: 86-90.
11. Kaczmarek U: Suchość jamy ustnej – etiologia, częstość występowania i rozpoznanie na podstawie piśmiennictwa. Czas Stomatol 2007; LX(1): 20-31.
12. Szydlarska D, Grzesiuk W, Kupstas A, Bar-Andziak E: S?lina jako materiał diagnostyczny. Forum Medycyny Rodzinnej 2008; 2(6): 454-464.
13. Mandel ID: The functions of saliva. J Dent Res 1987; 66: 623-627.
14. Nederfors T, Dahlof C: Effects of the beta-adrenoceptor antagonists atenolol and propanolol on human whole saliva flow rate and composition. Arch Oral Biol 1992; 37(7): 579-584.
15. Rantonen PJ, Meurman JH: Viscosity of whole saliva. Acta Odontol Scand 1998; 56(4): 210-214.
16. de Paula F, Teshima THN, Hsieh R et al.: Overview of human salivary glands: hightlights of morphology and developing process. Anat Rec (Hoboken) 2017; 300(7): 1180-1188.
17. Som PM, Miletich I: The Embryology of the Salivary Glands: An Update. Neurographics 2015; 5(4): 167-177.
18. Holmberg KV, Matthew P: Hoffman MP: Anatomy, biogenesis and regeneration of salivary glands. Monogr Oral Sci 2014; 24: 1-13.
19. Heintze U, Birkhed D, Bjorn H: Secretion rate and buffer effect of resting and stimulated whole saliva as a function of age and sex. Swed Dent J 1983; 7(6): 227-238.
20. Ship JA, Pillemer SR, Baum BJ: Xerostomia and the geriatric patient. J Am Geriatr Soc 2002; 50(3): 535-543.
21. Sreebny LM, Valdini A: Xerostomia. Part I: Relationship to other oral symptoms and salivary gland hypofunction. Oral Surg Oral Med Oral Pathol 1988; 66(4): 451-458.
22. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ: Protein measurement with the Folin phenol reagent. J Biol Chem 1951; 193(1): 265-275.
23. Jankowska AK, Waszkiel D, Kowalczyk A: Ślina jako główny składnik ekosystemu jamy ustnej. Część I. Mechanizm wydzielania i funkcje. Wiad Lekarskie 2007; LX(3-4): 148-154.
24. Shatzman AR, Henkin RI: Gustin concentration changes relative to salivary zinc and taste in human. Proc Natl Acad Sci USA 1981; 78: 3867-3874.
25. Kaczmarek U: O właściwościach amylaz ślinowych. Wrocł Stomat 1990: 201-208.
26. Wesley-Hadzija B, Pigon H: Effect of diet in West Africa on human salivary amylase activity. Archs Oral Biol 1972; 17: 1415-1418.
27. Makinen KK, Scheinin A: Turku sugar studies. VII. Principal biochemical findings on whole saliva and plaque. Acta Odont Scand 1976; 34: 241-248.
28. Hakkinen L, Uitto V, Larjava H: Cell biology of gingival wound healing. Periodontology 2000; 24: 127-152.
29. Pytko-Polończyk J: Rola epidermalnego czynnika wzrostu i ślinianek w procesie gojenia owrzodzeń błony śluzowej jamy ustnej i żołądka. Czas Stomat 1997; 50(9): 579-587.
30. Bernardi G, Giro M, Gallard C: Chromatography of purification and proteins on hydroxyapatite columns: some new developments. Biochem Biophys Acta 1972; 278: 409-420.
31. Adamczyk E: Rola śliny w powstawaniu płytki nazębnej i płytki protez. Protet Stomatol 1992; 42(5): 153-154.
32. Llena-Puy C: The role of saliva in maintaining oral health and as an aid to diagnosis. Med Oral Patol Oral Cir Bucal 2006; 11(5): E449-E455.
33. Edgar M, Dawes C, O’Mullane D: Saliva and oral health. BDJ Books, London 2004: 1-136.
34. Crossner CG: Salivary flow rate in children and adolescents. Swed Dent J 1984; 6(8): 271-276.
35. Watanabe S, Dawes C: Salivary flow rates and salivary film thickness in five-year-old children. J Dent Res 1990; 69(5): 1150-1153.
36. Bretz WA, do Valle EV, Jacobson JJ et al.: Unstimulated salivary flow rates of young children. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2001; 91(5): 541-545.
37. Wu KP, Ke J-Y, Chung C-Y et al.: Relationship between unstimulated salivary flow rate and saliva composition of healthy children in Taiwan. Chang Gung Med J 2008; 31: 281-286.
38. Torres SR, Nucci M, Milanos E et al.: Variations of salivary flow rates in Brazilian school children. Braz Oral Res 2006; 20(1): 8-12.
39. Tulunoglu O, Demirtas S, Tulunoglu I: Total antioxidant levels of saliva in children related to caries, age, and gender. Int J Paediatr Dent 2006; 16(3): 186-191.
40. Forcella L, Filippi C, Waltimo T et al.: Measurement of unstimulated salivary flow rate in healthy children aged 6 to 15 years. Swiss Dent J 2018; 128(12): 962-967.
41. Piróg A, Kalińska A, Gozdowski D, Olczak-Kowalczyk D: Influence of physicochemical parameters of saliva on dentition, gingiva and oral mucosa in healthy children. J Stoma 2013; 66(2): 154-169.
42. Hyyppä T, Karhuvaara L, Tenovuo J et al.: A longitudinal factors in whole saliva of human infants: a longitudinal study. Pediatr Dent 1989; 11(1): 30-36.