Grażyna Marczuk-Kolada, *Sylwia Kuderewska, Michalina Żyłkiewicz
Evaluation of cytotoxicity of selected compomers on gingival fibroblasts – ex vivo studies
Ocena cytotoksyczności wybranych kompomerów na fibroblasty dziąsła – badania ex vivo
Department of Pediatric Dentistry, Medical University of Białystok
Head of Department: Grażyna Marczuk-Kolada, PhD, MD
Streszczenie
Wstęp. Kompomery powstały w wyniku połączenia materiałów złożonych i cementów szkło-jonomerowych. Ze względu na swoje właściwości budzą duże zainteresowanie wśród lekarzy praktyków, szczególnie stomatologów dziecięcych.
Cel pracy. Porównanie działania cytotoksycznego dwóch wybranych kompomerów wobec fibroblastów dziąsła ludzkiego.
Materiał i metody. Ocenę przeprowadzono, używając testu MTT. Dla każdego materiału wykonano po 12 próbek. Połowę próbek (6 sztuk) polimeryzowano przez 20 sekund w dwóch warstwach lampą halogenową (Polylux II, Kavo) i drugą połowę lampą diodową (B-Max, Tecno-Gaz, 1600 mW/cm2). Płytki hodowlane z komórkami i insertami z materiałami przez 24 godziny inkubowano w temperaturze 37°C, 5% CO2 i 95% wilgotności. Następnie usuwano inserty z materiałami, a do każdego dołka dodawano 1 ml MTT w stężeniu 0,5 mg/ml podłoża i inkubowano bez dostępu światła 3 godziny w opisanych warunkach. Gęstość optyczną mierzono za pomocą spektrofotometru absorpcyjnego przy długości fali 560 nm.
Wyniki. Analiza uzyskanych wyników ujawniła niewielkie, nieistotne statystycznie różnice w cytotoksyczności badanych materiałów w zależności od źródła polimeryzacji.
Wnioski. Należy kontynuować badania mające na celu aktualizację informacji dotyczących zagadnień cytotoksyczności.
Summary
Introduction. Compomers are the result of combining composite materials and glass ionomer cements. Due to their properties, compomers are of interest among medical practitioners, especially pediatric dentists.
Aim. The aim of this study was to compare the cytotoxic effect of two selected compomers on human gingival fibroblasts.
Material and methods. The assessment was conducted using the MTT test. Twelve samples were prepared for each material. Half of the samples (6 samples) were polymerized for 20 seconds in two layers with a halogen lamp (Polylux II, Kavo) and the other half with a diode lamp (B-Max, Tecno-Gaz, 1600 mW/cm2). Culture plates with cells and inserts with materials were incubated at 37°C, 5% CO2 and 95% humidity for 24 hours. Then the inserts were removed, 1 mL of MTT was added in the amount of 0.5 mg per 1 mL of the medium and samples were incubated in the described conditions without light for 3 hours. The optical density was measured with an absorption spectrophotometer at the 560 nm wavelength.
Results. The analysis of the results revealed slight, not statistically significant differences in the cytotoxicity of the tested materials depending on the polymerization source.
Conclusions. Research should continue to update information on cytotoxicity issues.
Introduction
According to current knowledge, carious lesions should be filled with fluoride-releasing adhesive materials. Compomers were developed in the 1990s as a result of combining composite materials and glass ionomer cements (1, 2). These materials contain a modified monomer and fluoride-releasing silicate glass. For this reason, inter alia, they arouse great interest among dental practitioners, particularly pediatric dentists (2, 3). An important advantage of the aforementioned materials, compared to glass ionomer cements, is their unlimited working time, as their binding occurs under the influence of light emitted by equipment for curing dental fillings. Halogen lamps commonly used for polymerisation are more and more often replaced by diode (LED) lamps due to the rapid wear and insufficient energy efficiency of the former (4). The first diode lamps were not received positively since they did not always enable the full required range of polymerisation, thus offering inadequate quality of polymerised materials, which was particularly expressed as high cytotoxicity. This was due to insufficient power of the light emitted by these lamps. The beginning of the 21st century marked the introduction of the second generation of diode lamps characterised by higher efficiency of light-emitting diodes. In the available literature, doubts are expressed in connection with biocompatibility of compomers cured with halogen and diode light (5).
Aim
The aim of this study was to evaluate cytotoxicity of selected compomers, using halogen and diode lamps for their polymerisation.
Material and methods
A. Preparation of material samples
The study was conducted with the use of two compomers, Dyract Extra (Dentsply) and Compoglass F (Ivoclar Vivadent). A2-coloured materials were applied to plastic rings with dimensions of 5 mm (inner diameter) x 5 mm (height). Twelve samples of each material were prepared. Half of the samples (6 pieces) were polymerised for 20 seconds in two layers with a halogen lamp (Polylux II, Kavo) and the other half – with a diode lamp (B-Max, Tecno-Gaz, 1600 mW/cm2). The rings with the materials were placed in inserts (from Nunc) with an area of 0.47 cm2 and 0.4 μm diameter of pores located in 24-well culture plates (Nunc) containing human gingival fibroblasts. In each of the 24-well plates, 6 wells with inserts without materials served as the control.
B. Preparation of cell cultures
Human gingival fibroblasts with adherent permanent cell lines (ATCC® CRL-2014HGF-1, LGC Promochem) were grown in Falcon containers (growth area: 75 cm2) in DMEM (Dulbecco’s Modified Eagle Medium) supplemented with 10% foetal bovine serum (FBS), at 37°C, with 5% CO2 and 95% humidity. After reaching confluent growth, cells were detached with 0.25% trypsin solution with added 0.53 mM EDTA. The enzyme activity was inhibited by adding medium with 10% FBS. The cell suspension was diluted in fresh medium, seeded in 24-well plates, and incubated for 24 hours.
C. Evaluation of cytotoxicity
The toxicity of the tested materials against human gingival fibroblasts was assessed with the use of the MTT assay. This method enables the determination of cell viability and proliferation based on mitochondrial succinate dehydrogenase activity. In living cells, this enzyme causes the reduction of the yellow tetrazolium salt, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) to purple formazan. The dye content is determined in an absorption spectrophotometer. The amount of formazan is directly proportional to the number of viable cells in the culture. At low cell survival rate, low enzyme activity and thus low purple formazan content and reduced absorbance values are observed.
Culture plates with cells and the applied materials were incubated at 37°C, with 5% CO2 and 95% humidity for 24 hours. After that time, the inserts with materials were removed, then 1 ml of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide at a concentration of 0.5 mg/ml of medium was added to each well and incubated for 2 hours in the above-mentioned conditions, without access to light. Next, the culture fluid was aspirated and 1 ml of isopropanol acidified with hydrochloric acid (0.04 mol/L-1) was added. The obtained solution was stirred briefly to dissolve the formazan crystals. Absorbance was measured using a Lambda EZ 201 (Perkin Elmer) double beam absorption spectrophotometer at 560 nm wavelength.
Powyżej zamieściliśmy fragment artykułu, do którego możesz uzyskać pełny dostęp.
Mam kod dostępu
- Aby uzyskać płatny dostęp do pełnej treści powyższego artykułu albo wszystkich artykułów (w zależności od wybranej opcji), należy wprowadzić kod.
- Wprowadzając kod, akceptują Państwo treść Regulaminu oraz potwierdzają zapoznanie się z nim.
- Aby kupić kod proszę skorzystać z jednej z poniższych opcji.
Opcja #1
29 zł
Wybieram
- dostęp do tego artykułu
- dostęp na 7 dni
uzyskany kod musi być wprowadzony na stronie artykułu, do którego został wykupiony
Opcja #2
69 zł
Wybieram
- dostęp do tego i pozostałych ponad 7000 artykułów
- dostęp na 30 dni
- najpopularniejsza opcja
Opcja #3
129 zł
Wybieram
- dostęp do tego i pozostałych ponad 7000 artykułów
- dostęp na 90 dni
- oszczędzasz 78 zł
Piśmiennictwo
1. Hickel R, Dasch W, Janda R et al.: New direct restorative materials. FDI Commission Project. Int Dent J 1998; 48: 3-16.
2. Krämer N, Frankenberger R: Compomers in restorative therapy of children: a literature review. Int J Paediatr Dent 2007; 17(1): 2-9.
3. Marks LAM, Faict N, Welbury RR: Literature review: restorations of class II cavities in the primary dentition with compomers. Eur Arch Paediat Dent 2010; 11(3): 109-113.
4. Dudzik K, Iwanicka-Grzegorek E: Lampy polimeryzacyjne stosowane w stomatologii – rodzaje, zastosowanie i mechanizm polimeryzacji. Nowa Stomatologia 2009; 3: 122-127.
5. Tunç ES, Özer L, Sari Ş, Çetiner S: Cytotoxic effect of halogen – and light-emitting diode-cured compomers on human pulp fibroblasts. Int J Paediatr Dent 2009; 19(1): 55-60.
6. Sjögren G, Sletten G, Dahl JE: Cytotoxicity of dental alloys, metals, and ceramics assessed by millipore filter, agar overlay, and MTT tests. J Prosthet Dent 2000; 84(2): 229-236.
7. Murray PE, Garcia Godoy C, Garcia Godoy F: How is the biocompatibility of dental biomaterials evaluated? Med Oral Patol Oral Cir Bucal 2007; 12(3): E258-266.
8. Wataha JC: Principles of biocompatibility for dental practitioners. J Prosthet Dent 2001; 86(2): 203-209.
9. Schmalz G: Concepts in biocompatibility testing of dental restorative materials. Clin Oral Investig 1997; 1(4): 154-162.
10. Atay A, Bozok Centintas V, Cal E et al.: Cytotoxicity of hard and soft denture lining materials. Dent Mater J 2012; 31(6): 1082-1086.
11. Sasanaluckit P, Albustany KP, Doherty PJ, Williams DF: Biocompatibility of glass ionomer cements. Biomaterials 1993; 14(12): 906-916.
12. Geursten W: Biocompatibility of resin-modified filling materials. Crit Rev Oral Biol Med 2000; 11(3): 333-355.
13. Quinlan CA, Zisterer DM, Tipton KF et al.: In vitro cytotoxicity of a composite resin and compomer. I Endod J 2002; 35(1): 47-55.
14. Schedle A, Franz A, Rausch-Fan X et al.: Cytotoxic effects of dental composites, adhesive substances, compomers and cements. Dent Mater 1998; 14(6): 429-440.
15. Knezevic A, Zeljezic D, Kopjar N, Tarle Z: Cytotoxicity of composite materials polymerized with LED curing units. Oper Dent 2008; 33(1): 23-30.
16. Knezevic A, Zeljezic D, Kopjar N, Tarle Z: Influence of curing mode intensites on cell culture citotoxicity/genotoxicity. Am J Dent 2009; 22(1): 43-48.
17. Wan-Yu T, Chien-Hsun H, Ruey-Song C et al.: Monomer conversion and cytotoxicity of dental composites irradiated with different modes of photoactivated curing. J Biomed Mater Res Part B Appl Biomater 2007; 83(1): 85-90.
18. Nalçaci A, Öztan MD, Yilmaz Ş: Cytotoxicity of composite resins polymerized with different curing methods. Int Endod J 2004; 37(2): 151-156.
19. Millar BJ, Nicholson JW: Effect of curing with a plasma light on the properties of polymerizable dental restorative materials. J Oral Rehabil 2001; 28(6): 549-552.
20. Bouillaguet S, Virgilito M, Wataha et al.: The influence of dentine permeability on cytotoxicity of four dentine bonding systems, in vitro. J Oral Rehabil 1998; 25(1): 45-51.
21. Hamid A, Hume WR: The effect of dentine thickness on diffusion of resin monomers in vitro. J Oral Rehabil 1997; 24(1): 20-25.
22. Goldberg M: In vitro and in vivo studies on the toxicity of dental resin components: a review. Clin Oral Investig 2008; 12(1): 1-8.